Muutke küpsiste eelistusi

E-raamat: Exploring Continued Fractions

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 68,95 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

There is a nineteen-year recurrence in the apparent position of the sun and moon against the background of the stars, a pattern observed long ago by the Babylonians. In the course of those nineteen years the Earth experiences 235 lunar cycles. Suppose we calculate the ratio of Earth's period about the sun to the moon's period about Earth. That ratio has 235/19 as one of its early continued fraction convergents, which explains the apparent periodicity.

Exploring Continued Fractions explains this and other recurrent phenomenaastronomical transits and conjunctions, lifecycles of cicadas, eclipsesby way of continued fraction expansions. The deeper purpose is to find patterns, solve puzzles, and discover some appealing number theory. The reader will explore several algorithms for computing continued fractions, including some new to the literature. He or she will also explore the surprisingly large portion of number theory connected to continued fractions: Pythagorean triples, Diophantine equations, the Stern-Brocot tree, and a number of combinatorial sequences.

The book features a pleasantly discursive style with excursions into music (The Well-Tempered Clavier), history (the Ishango bone and Plimpton 322), classics (the shape of More's Utopia) and whimsy (dropping a black hole on Earth's surface). Andy Simoson has won both the Chauvenet Prize and Pólya Award for expository writing from the MAA and his Voltaire's Riddle was a Choice magazine Outstanding Academic Title. This book is an enjoyable ramble through some beautiful mathematics. For most of the journey the only necessary prerequisites are a minimal familiarity with mathematical reasoning and a sense of fun.
Introduction xiii
Strand I Patterns
1(28)
Tips on problem-solving and spotting patterns
2(2)
A look ahead at three patterns
4(5)
Chapter I Tally Bones to the Integers
9(20)
Tally bones
9(1)
A table of primes?
10(2)
The solution to a puzzle?
12(1)
A base twelve or base sixty system?
13(2)
Base ten, base twenty, base eight, base two
15(1)
A binary digit interlude
16(3)
Solving the shepherd's puzzle and beyond
19(2)
Three parting puzzles
21(2)
Exercises
23(6)
Strand II Leibniz and the Binary Revolution
29(40)
A continued fraction connection
34(3)
Chapter II Mathematical Induction
37(32)
Set notation and the well-ordering principle
37(4)
The principle of mathematical induction
41(2)
The fundamental theorem of arithmetic
43(2)
Equivalence classes
45(2)
Nim*
47(10)
Case Study: Mancala*
57(3)
Mancala nim*
60(3)
Exercises
63(6)
Strand III Al-Maghribi meets Sudoku
69(30)
Chapter III GCDs and Diophantine Equations
73(26)
The greatest common divisor
74(4)
An ancient algorithm for the greatest common divisor
78(7)
The Diophantine solution
85(3)
A litmus test for Euclid's solution
88(1)
Clock arithmetic
89(3)
Systems of Diophantine equations
92(1)
The totient is multiplicative
93(1)
A problem from Diophantus's Arithmetica
93(1)
Exercises
94(5)
Strand IV Fractions in the Pythagorean Scale
99(40)
A note-naming interlude
100(2)
How Pythagoras generated his scale
102(5)
Chapter IV A Tree of Fractions
107(32)
Unitary fractions in ancient Egypt
108(2)
A continued fraction tradition
110(1)
Farey sequences
111(5)
A mediant interlude*
116(2)
The Stern-Brocot tree
118(12)
A grand finale*
130(2)
Exercises
132(7)
Strand V Bach and The Well-Tempered Clavier
139(30)
A well-tempered innovation
141(1)
A musical interlude
142(2)
An equal-tempered revolution
144(1)
A continued fraction connection
145(2)
Chapter V The Harmonic Series
147(22)
Case Study: Jeeps in the Desert
157(5)
A look behind and a look ahead
162(1)
A generating function finale*
163(3)
Exercises
166(3)
Strand VI A Clay Tablet
169(52)
The Babylonian number system
170(2)
The accepted transliteration of Plimpton 322
172(2)
Reciprocal pairs generate normalized Pythagorean triples
174(4)
Finding the realm of potential generators
178(3)
How the scribe may have screened for generators
181(1)
The purpose of the tablet
182(3)
Chapter VI Families of Numbers
185(36)
Primitive Pythagorean triples
185(1)
Binomial coefficients
186(4)
Fibonacci numbers
190(5)
The continued fraction recursion for e
195(2)
The Catalan numbers*
197(6)
Ben-Hur numbers*
203(6)
Pogo-stick hikes along continued fractions
209(2)
Exercises
211(10)
Strand VII Planetary Conjunctions
221(40)
A few conjunction stories
221(1)
A rough guess
222(1)
A numerical approach
223(1)
A continued fraction approach
224(5)
Chapter VII Simple and Strange Harmonic Motion
229(32)
A heavenly approach to circular motion
229(5)
An earthly approach to circular motion*
234(6)
Strange harmonic motion
240(4)
A where, what, and why interlude
244(2)
The harmonic algorithm
246(5)
A blue moon application
251(2)
Exercises
253(8)
Strand VIII The Size and Shape of Utopia Island
261(42)
Chapter VIII Classic Elliptical Fractions
271(32)
The prehistory of the ellipse
272(2)
The trammel of Archimedes
274(1)
An old elliptical puzzle
275(3)
A model for the heavens
278(2)
Newton's case for a flattened Earth*
280(9)
The French expeditions to Peru and Lapland
289(6)
A final riddle
295(4)
Exercises
299(4)
Strand IX The Cantor Set
303(48)
A lotus-flower introduction
303(2)
Ternary notation
305(3)
A reality check*
308(3)
Chapter IX Continued Fractions
311(40)
A local approach to continued fractions
311(7)
A global approach to continued fractions
318(4)
A plethora of continued fractions
322(6)
Why the ugly duckling G is really a swan
328(2)
An interlude delineating Algorithm O*
330(1)
Dominance domains
331(1)
The harmonic algorithm is a chameleon
332(3)
Applying continued fractions to factoring integers
335(1)
The first infinite continued fraction
336(4)
Black holes and the receding Moon
340(5)
Exercises
345(6)
Strand X The Longevity of the 17-year Cicada
351(28)
Chapter X Transits of Venus
357(22)
A historical interlude
358(3)
A Venus-Earth-Sun model
361(3)
Conditions for a transit to occur
364(4)
Recognizing the pattern
368(4)
A reality check
372(2)
An easier way to determine when transits occur
374(1)
A final thought
375(1)
Exercises
376(3)
Strand XI Meton of Athens
379(20)
Chapter XI Lunar Rhythms
383(16)
Predicting the time lapse between successive new moons
384(5)
Checking the expected length of short and long spans
389(2)
Expected value of the variation in spans of years*
391(2)
Final thoughts
393(2)
Exercises
395(4)
Strand XII Eclipse Lore and Legends
399(26)
Chapter XII Diophantine Eclipses
405(20)
Adapting the Earth-Moon-Sun model
405(3)
Eclipse duration
408(1)
A sufficient condition for eclipses
408(2)
Finding H at any lunation
410(2)
Using Condition 1 to find the lapse between successive eclipses
412(1)
Continued fraction insight
412(3)
Some Diophantine magic
415(3)
Lunar eclipses
418(1)
A reality check
419(1)
A final note
420(1)
Exercises
421(4)
Appendix I List of Symbols Used in the Text 425(4)
Appendix II An Introduction to Vectors and Matrices 429(8)
Appendix III Computer Algebra System Codes 437(16)
Appendix IV Comments on Selected Exercises 453(12)
Bibliography 465(8)
Index 473
Andrew J. Simoson, King University, Bristol, TN.