Muutke küpsiste eelistusi

E-raamat: Exploring the DataFlow Supercomputing Paradigm: Example Algorithms for Selected Applications

Edited by , Edited by
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 61,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This useful text/reference describes the implementation of a varied selection of algorithms in the DataFlow paradigm, highlighting the exciting potential of DataFlow computing for applications in such areas as image understanding, biomedicine, physics simulation, and business.The mapping of additional algorithms onto the DataFlow architecture is also covered in the following Springer titles from the same team: DataFlow Supercomputing Essentials: Research, Development and Education, DataFlow Supercomputing Essentials: Algorithms, Applications and Implementations, and Guide to DataFlow Supercomputing.Topics and Features: introduces a novel method of graph partitioning for large graphs involving the construction of a skeleton graph; describes a cloud-supported web-based integrated development environment that can develop and run programs without DataFlow hardware owned by the user; showcases a new approach for the calculation of the extrema of functions in one dimension, by implementing the Golden Section Search algorithm; reviews algorithms for a DataFlow architecture that uses matrices and vectors as the underlying data structure; presents an algorithm for spherical code design, based on the variable repulsion force method; discusses the implementation of a face recognition application, using the DataFlow paradigm; proposes a method for region of interest-based image segmentation of mammogram images on high-performance reconfigurable DataFlow computers; surveys a diverse range of DataFlow applications in physics simulations, and investigates a DataFlow implementation of a Bitcoin mining algorithm.This unique volume will prove a valuable reference for researchers and programmers of DataFlow computing, and supercomputing in general. Graduate and advanced undergraduate students will also find that the book serves as an ideal supplementary text for courses on Data Mining, Microprocessor Systems, and VLSI Systems.
Part I Theoretical Issues
1 Method of Big-Graph Partitioning Using a Skeleton Graph
3(38)
Iztok Savnik
Kiyoshi Nitta
2 On Cloud-Supported Web-Based Integrated Development Environment for Programming Data Flow Architectures
41(14)
Nenad Korolija
Ales Zamuda
Part II Applications in Mathematics
3 Minimization and Maximization of Functions: Golden-Section Search in One Dimension
55(36)
Dragana Pejic
Milos Arsic
4 Matrix-Based Algorithms for DataFlow Computer Architecture: An Overview and Comparison
91(42)
Jury Mihelic
Uros Cibej
5 Application of Maxeler DataFlow Supercomputing to Spherical Code Design
133(38)
Ivan Stanojevic
Mladen Kovacevic
Vojin Senk
Part III Applications in Image Understanding, Biomedicine, Physics Simulation, and Business
6 Face Recognition Using Maxeler DataFlow
171(26)
Tijana Sustersic
Aleksandra Vulovic
Nemanja Trifunovic
Ivan Milankovic
Nenad Filipovic
7 Biomedical Images Processing Using Maxeler DataFlow Engines
197(32)
Aleksandar S. Peulic
Ivan Milankovic
Nikola V. Mijailovic
Nenad Filipovic
8 An Overview of Selected DataFlow Applications in Physics Simulations
229(12)
Nenad Korolija
Roman Trobec
9 Bitcoin Mining Using Maxeler DataFlow Computers
241(72)
Rok Meden
Anton Kos
Index 313
Dr. Veljko Milutinovic teaches DataFlow supercomputing in the School of Informatics, Computing, and Engineering at Indiana University, Bloomington, IN, USA, and previously served for about a decade on the faculty of Purdue University in West Lafayette, IN, USA. He is a co-designer of DARPAs first GaAs RISC microprocessor on 200MHz and a co-designer of the DARPAs 4096-processor systolic array. He is a Life Fellow of the IEEE and a Life Member the ACM. He is a Member of The Academy of Europe, a Member of the Serbian National Academy of Engineering, and a Foreign Member of the Montenegrin Academy of Sciences and Arts. He serves as a Senior Advisor to Maxeler Technologies in London, UK. Mr. Milos Kotlar is a Software Engineer at the Swiss-Swedish company ABB (ASEA Brown Boveri) of Zurich, Switzerland and a Ph.D. student at the School of Electrical Engineering at the University of Belgrade, Serbia. He serves as a TA for DataFlow supercomputing courses and as an RA for DataFlow supercomputing research in the domain of tensor calculus.