Muutke küpsiste eelistusi

E-raamat: Exploring Formalisation: A Primer in Human-Readable Mathematics in Lean 3 with Examples from Simplicial Topology

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This primer on mathematics formalisation provides a rapid, hands-on introduction to proof verification in Lean.

After a quick introduction to Lean, the basic techniques of human-readable formalisation are introduced, illustrated by simple examples on maps, induction and real numbers. Subsequently, typical design options are discussed and brought to life through worked examples in the setting of simplicial complexes (a higher-dimensional generalisation of graph theory). Finally, the book demonstrates how current research in algebraic and geometric topology can be formalised by means of suitable abstraction layers.

Informed by the author's recent teaching and research experience, this book allows students and researchers to quickly get started with formalising and checking their proofs. The core material of the book is accessible to mathematics students with basic programming skills. For the final chapter, familiarity with elementary category theory and algebraic topology is recommended.
Introduction.- 1 The Lean Proof Assistant.- 2 Basic Examples.- 3 Design
Choices.- 4 Abstraction and Prototyping.
Clara Löh is Professor of Mathematics at the University of Regensburg, Germany. Her research focuses on simplicial volume and the interaction between geometric topology, geometric group theory, and measured group theory. This includes cohomological, geometric, and combinatorial methods. She is also interested in the foundations of mathematics and the formalisation/verification of mathematics in proof assistants.