About the Authors |
|
xvii | |
Preface to the Second Edition |
|
xix | |
Preface to the First Edition |
|
xxi | |
|
|
|
|
2 | (1) |
|
1.2 A Brief History of Monte Carlo |
|
|
3 | (8) |
|
1.3 Monte Carlo as Quadrature |
|
|
11 | (4) |
|
1.4 Monte Carlo as Simulation |
|
|
15 | (3) |
|
1.5 Preview of Things to Come |
|
|
18 | (1) |
|
|
19 | (7) |
|
|
19 | (4) |
|
|
23 | (3) |
|
2 The Basis of Monte Carlo |
|
|
|
2.1 Functions of a Single Continuous Random Variable |
|
|
26 | (8) |
|
2.1.1 Probability Density Function |
|
|
26 | (1) |
|
2.1.2 Cumulative Distribution Function |
|
|
27 | (1) |
|
2.1.3 Some Example Distributions |
|
|
27 | (3) |
|
2.1.4 Population Mean, Variance, and Standard Deviation |
|
|
30 | (1) |
|
2.1.5 Sample Mean, Variance, and Standard Deviation |
|
|
31 | (3) |
|
2.2 Discrete Random Variables |
|
|
34 | (3) |
|
2.2.1 Special Cases of Discrete Distributions |
|
|
36 | (1) |
|
2.3 Multiple Random Variables |
|
|
37 | (5) |
|
2.3.1 Two Random Variables |
|
|
37 | (2) |
|
2.3.2 More Than Two Random Variables |
|
|
39 | (1) |
|
2.3.3 Sums of Random Variables |
|
|
40 | (2) |
|
2.4 The Law of Large Numbers |
|
|
42 | (1) |
|
2.5 The Central Limit Theorem |
|
|
43 | (3) |
|
2.6 Monte Carlo Quadrature |
|
|
46 | (2) |
|
2.7 Monte Carlo Simulation |
|
|
48 | (3) |
|
|
51 | (4) |
|
|
52 | (1) |
|
|
53 | (2) |
|
3 Pseudorandom Number Generators |
|
|
|
|
55 | (5) |
|
3.1.1 Origins of Random Number Generators |
|
|
57 | (1) |
|
3.1.2 Properties of Good RNCs |
|
|
57 | (2) |
|
3.1.3 Classification of RNGs |
|
|
59 | (1) |
|
3.2 Linear Congruential Generators |
|
|
60 | (3) |
|
3.2.1 Structure of the Generated Random Numbers |
|
|
61 | (2) |
|
3.3 Tests for Linear Congruential Generators |
|
|
63 | (2) |
|
|
64 | (1) |
|
3.3.2 Number of Hyperplanes |
|
|
64 | (1) |
|
3.3.3 Distance Between Points |
|
|
65 | (1) |
|
|
65 | (1) |
|
3.4 Practical Multiplicative Congruential Generators |
|
|
65 | (3) |
|
3.4.1 Generators with m = 2" |
|
|
66 | (1) |
|
3.4.2 Prime Modulus Generators |
|
|
67 | (1) |
|
3.5 A Minimal Standard Congruential Generator |
|
|
68 | (6) |
|
3.5.1 Coding the Minimal Standard |
|
|
69 | (2) |
|
3.5.2 Deficiencies of the Minimal Standard Generator |
|
|
71 | (1) |
|
3.5.3 Optimum Multipliers for Prime Modulus Generators |
|
|
71 | (1) |
|
3.5.4 Shuffling a Generator's Output |
|
|
72 | (1) |
|
3.5.5 Refinement of the Minimal Standard |
|
|
73 | (1) |
|
|
74 | (1) |
|
|
74 | (2) |
|
|
75 | (1) |
|
3.7.2 The Wichmann--Hill Generator |
|
|
75 | (1) |
|
3.7.3 The L'Ecuyer Generator |
|
|
76 | (1) |
|
3.8 Other Congruential Random Number Generators |
|
|
76 | (3) |
|
3.8.1 Multiple Recursive Generators |
|
|
77 | (1) |
|
3.8.2 Lagged Fibonacci Generators |
|
|
77 | (1) |
|
3.8.3 Add-with-Carry Generators |
|
|
78 | (1) |
|
3.8.4 Inversive Congruential Generators |
|
|
78 | (1) |
|
3.8.5 Nonlinear Congruential Generators |
|
|
79 | (1) |
|
3.9 RNGs Using Linear Feedback Shift Registers |
|
|
79 | (4) |
|
3.9.1 The Tausworthe Bit-Level RNG |
|
|
79 | (4) |
|
3.10 What Is a Linear Feedback Shift Register? |
|
|
83 | (7) |
|
3.10.1 Random Numbers From Random Bits |
|
|
85 | (2) |
|
|
87 | (1) |
|
|
88 | (2) |
|
3.11 RNGs Based on Cellular Automata |
|
|
90 | (8) |
|
3.11.1 One-Dimensional Cellular Automata |
|
|
91 | (3) |
|
3.11.2 Random Number Generation From Cellular Automata |
|
|
94 | (2) |
|
3.11.3 Calculating Elementary Cellular Automata |
|
|
96 | (1) |
|
3.11.4 Some CA-Based RNGs |
|
|
97 | (1) |
|
3.12 "Recent" Random Number Generators |
|
|
98 | (3) |
|
3.12.1 Some RNG Developments in the Last 30 Years |
|
|
99 | (2) |
|
3.13 Assessment Tests for RNGs |
|
|
101 | (2) |
|
3.13.1 Basic Statistical Tests |
|
|
101 | (1) |
|
3.13.2 The Diehard Test Suite |
|
|
101 | (1) |
|
3.13.3 The Dieharder Test Suite |
|
|
102 | (1) |
|
3.13.4 Other Test Libraries for RNCs |
|
|
103 | (1) |
|
|
103 | (8) |
|
|
105 | (2) |
|
|
107 | (4) |
|
4 Sampling, Scoring, and Precision |
|
|
|
|
111 | (19) |
|
4.1.1 Inverse CDF Method for Continuous Variables |
|
|
112 | (3) |
|
4.1.2 Inverse CDF Method for Discrete Variables |
|
|
115 | (1) |
|
4.1.3 Sampling by Table Lookup |
|
|
116 | (5) |
|
|
121 | (3) |
|
|
124 | (1) |
|
4.1.6 Rectangle-Wedge-Tail Decomposition Method |
|
|
125 | (1) |
|
4.1.7 Sampling From a Nearly Linear PDF |
|
|
126 | (1) |
|
4.1.8 Composition-Rejection Method |
|
|
127 | (1) |
|
4.1.9 Ratio of Uniforms Method |
|
|
127 | (1) |
|
4.1.10 Sampling From a Joint Distribution |
|
|
128 | (1) |
|
4.1.11 Sampling From Specific Distributions |
|
|
128 | (2) |
|
|
130 | (7) |
|
4.2.1 Use of Weights in Scoring |
|
|
131 | (2) |
|
4.2.2 Scoring for "Successes-Over-Trials" Simulation |
|
|
133 | (1) |
|
4.2.3 Scoring for Multidimensional Integrals |
|
|
134 | (1) |
|
4.2.4 Statistical Tests to Assess Results |
|
|
135 | (2) |
|
4.3 Accuracy and Precision |
|
|
137 | (6) |
|
4.3.1 Factors Affecting Accuracy |
|
|
138 | (1) |
|
4.3.2 Factors Affecting Precision |
|
|
139 | (2) |
|
|
141 | (2) |
|
|
143 | (11) |
|
|
145 | (3) |
|
|
148 | (6) |
|
5 Variance Reduction Techniques |
|
|
|
5.1 Use of Transformations |
|
|
154 | (2) |
|
|
156 | (5) |
|
5.2.1 Application to Monte Carlo Integration |
|
|
160 | (1) |
|
|
161 | (5) |
|
5.3.1 Comparison to Straightforward Sampling |
|
|
164 | (1) |
|
5.3.2 Systematic Sampling to Evaluate an Integral |
|
|
165 | (1) |
|
5.3.3 Systematic Sampling as Importance Sampling |
|
|
166 | (1) |
|
|
166 | (3) |
|
5.4.1 Comparison to Straightforward Sampling |
|
|
167 | (1) |
|
5.4.2 Importance Sampling Versus Stratified Sampling |
|
|
168 | (1) |
|
|
169 | (7) |
|
5.5.1 Correlated Sampling with One Known Expected Value |
|
|
170 | (2) |
|
5.5.2 Antithetic Variates |
|
|
172 | (4) |
|
5.6 Partition of Integration Volume |
|
|
176 | (1) |
|
5.7 Reduction of Dimensionality |
|
|
177 | (1) |
|
5.8 Russian Roulette and Splitting |
|
|
178 | (2) |
|
5.8.1 Application to Monte Carlo Simulation |
|
|
179 | (1) |
|
5.9 Combinations of Different Variance Reduction Methods |
|
|
180 | (1) |
|
|
181 | (1) |
|
5.11 Improved Monte Carlo Integration Schemes |
|
|
182 | (3) |
|
5.11.1 Weighted Monte Carlo Integration |
|
|
183 | (1) |
|
5.11.2 Monte Carlo Integration with Quasi-Random Numbers |
|
|
184 | (1) |
|
|
185 | (4) |
|
|
185 | (2) |
|
|
187 | (2) |
|
6 Markov Chain Monte Carlo |
|
|
|
6.1 Review of the Ordinary Monte Carlo Method |
|
|
189 | (2) |
|
6.2 Markov Chains to the Rescue |
|
|
191 | (29) |
|
6.2.1 A Discrete Random Variable |
|
|
192 | (3) |
|
6.2.2 A Continuous Random Variable |
|
|
195 | (1) |
|
|
196 | (3) |
|
6.2.4 The Metropolis-Hastings Algorithm |
|
|
199 | (5) |
|
6.2.5 The Myth of Burn-in |
|
|
204 | (2) |
|
6.2.6 The M-H Independence Sampler |
|
|
206 | (5) |
|
6.2.7 Selecting a Proposal Distribution |
|
|
211 | (1) |
|
6.2.8 Multidimensional Sampling |
|
|
212 | (3) |
|
|
215 | (4) |
|
6.2.10 The Problem of High Dimensionality |
|
|
219 | (1) |
|
6.3 Brief Review of Probability Concepts |
|
|
220 | (12) |
|
|
222 | (3) |
|
6.3.2 Extending the Application of Bayes' Theorem |
|
|
225 | (2) |
|
6.3.3 Probability and Confidence Intervals |
|
|
227 | (3) |
|
6.3.4 Conjugate Prior Distributions |
|
|
230 | (2) |
|
6.4 Use of MCMC in Bayesian Analysis |
|
|
232 | (9) |
|
6.4.1 Using MCMC to Calculate the Posterior PDF |
|
|
232 | (4) |
|
6.4.2 MCMC and Nonconjugate Prior PDFs |
|
|
236 | (2) |
|
6.4.3 Estimating the Prior Distribution |
|
|
238 | (2) |
|
6.4.4 Failure Rate Analysis |
|
|
240 | (1) |
|
6.5 Inference and Decision Applications |
|
|
241 | (7) |
|
6.5.1 Implementing MCMC with Data |
|
|
243 | (1) |
|
6.5.2 The Likelihood Function |
|
|
244 | (4) |
|
|
248 | (10) |
|
|
250 | (2) |
|
|
252 | (6) |
|
|
|
7.1 Formulation of the Inverse Problem |
|
|
258 | (3) |
|
7.1.1 Integral Formulation |
|
|
258 | (1) |
|
7.1.2 Practical Formulation |
|
|
259 | (1) |
|
7.1.3 Optimization Formulation |
|
|
260 | (1) |
|
7.1.4 Monte Carlo Approaches to Solving Inverse Problems |
|
|
261 | (1) |
|
7.2 Inverse Monte Carlo by Iteration |
|
|
261 | (2) |
|
|
263 | (18) |
|
7.3.1 Uncertainties in Retrieved Values |
|
|
264 | (2) |
|
7.3.2 The PDF Is Fully Known |
|
|
266 | (4) |
|
|
270 | (8) |
|
7.3.4 Unknown Parameter in Domain of x |
|
|
278 | (3) |
|
7.4 Inverse Monte Carlo by Simulation |
|
|
281 | (2) |
|
7.4.1 A Simple Two-Dimensional World |
|
|
281 | (2) |
|
7.5 General Applications of IMC |
|
|
283 | (4) |
|
|
284 | (2) |
|
7.5.2 Photon Beam Modifier Design |
|
|
286 | (1) |
|
7.5.3 Energy-Dispersive X-Ray Fluorescence |
|
|
286 | (1) |
|
|
287 | (4) |
|
|
288 | (1) |
|
|
289 | (2) |
|
8 Linear Operator Equations |
|
|
|
8.1 Linear Algebraic Equations |
|
|
291 | (9) |
|
8.1.1 Solution of Linear Equations by Random Walks |
|
|
293 | (4) |
|
8.1.2 Solving the Adjoint Linear Equations by Random Walks |
|
|
297 | (1) |
|
8.1.3 Solution of Linear Equations by Finite Random Walks |
|
|
298 | (2) |
|
8.1.4 Recent Interest in Monte Carlo Linear Equation Solvers |
|
|
300 | (1) |
|
8.2 Linear Integral Equations |
|
|
300 | (7) |
|
8.2.1 Frequently Encountered Integral Equations |
|
|
301 | (1) |
|
8.2.2 Approximating Integral Equations by Algebraic Equations |
|
|
302 | (1) |
|
8.2.3 Monte Carlo Solution of a Simple Integral Equation |
|
|
303 | (2) |
|
8.2.4 A More General Procedure for Integral Equations |
|
|
305 | (2) |
|
8.3 Ordinary Differential Equations |
|
|
307 | (31) |
|
8.3.1 Reduction to First-Order Equations |
|
|
310 | (1) |
|
8.3.2 Monte Carlo Solution of Initial Value Problems |
|
|
310 | (3) |
|
8.3.3 Monte Carlo Solution of Partial Differential Equations |
|
|
313 | (2) |
|
8.3.4 Discretization of Poisson's Equation |
|
|
315 | (2) |
|
8.3.5 Discrete Random Walks for Poisson's Equation |
|
|
317 | (5) |
|
8.3.6 Continuous Random Walks for the 2-D Laplace's Equation |
|
|
322 | (3) |
|
8.3.7 Continuous Monte Carlo for 2-D Poisson Equation |
|
|
325 | (1) |
|
8.3.8 Other Boundary Conditions |
|
|
326 | (3) |
|
8.3.9 Extension to Three Dimensions |
|
|
329 | (1) |
|
8.3.10 Continuous Monte Carlo for the 3-D Poisson Equation |
|
|
330 | (3) |
|
8.3.11 Continuous Monte Carlo for the 2-D Helmholtz Equation |
|
|
333 | (4) |
|
8.3.12 The 3-D Helmholtz Equation |
|
|
337 | (1) |
|
8.4 Transient Partial Differential Equations |
|
|
338 | (15) |
|
8.4.1 Reverse-Time Monte Carlo |
|
|
338 | (8) |
|
8.4.2 Green's Function Approach |
|
|
346 | (7) |
|
|
353 | (9) |
|
8.5.1 Matrix Eigenvalue Problem |
|
|
353 | (3) |
|
8.5.2 Eigenvalues of Integral Operators |
|
|
356 | (5) |
|
8.5.3 Eigenvalues of Differential Operators |
|
|
361 | (1) |
|
|
362 | (8) |
|
|
362 | (5) |
|
|
367 | (3) |
|
9 The Fundamentals of Neutral Particle Transport |
|
|
|
9.1 Description of the Radiation Field |
|
|
370 | (6) |
|
9.1.1 Directions and Solid Angles |
|
|
370 | (2) |
|
|
372 | (1) |
|
|
373 | (1) |
|
|
374 | (1) |
|
|
375 | (1) |
|
9.2 Radiation Interactions with the Medium |
|
|
376 | (10) |
|
9.2.1 Interaction Coefficient/Macroscopic Cross Section |
|
|
376 | (2) |
|
9.2.2 Attenuation of Uncollided Radiation |
|
|
378 | (1) |
|
9.2.3 Average Travel Distance Before an Interaction |
|
|
379 | (1) |
|
9.2.4 Scattering Interaction Coefficients |
|
|
380 | (1) |
|
9.2.5 Microscopic Cross Sections |
|
|
381 | (3) |
|
9.2.6 Reaction Rate Density |
|
|
384 | (2) |
|
|
386 | (5) |
|
9.3.1 One-Speed Transport Equation in Plane Geometry |
|
|
390 | (1) |
|
9.4 Integral Forms of the Transport Equation |
|
|
391 | (6) |
|
9.4.1 Integral Equation for the Angular Flux Density |
|
|
391 | (4) |
|
9.4.2 Integral Equations for Integrals of φ(r, E, Ω) |
|
|
395 | (1) |
|
9.4.3 Explicit Form for the Scalar Flux Density |
|
|
396 | (1) |
|
9.4.4 Alternate Forms of the Integral Transport Equation |
|
|
396 | (1) |
|
9.5 Adjoint Transport Equation |
|
|
397 | (4) |
|
9.5.1 Derivation of the Adjoint Transport Equation |
|
|
398 | (2) |
|
9.5.2 Utility of the Adjoint Solution |
|
|
400 | (1) |
|
|
401 | (5) |
|
|
402 | (1) |
|
|
403 | (3) |
|
10 Monte Carlo Simulation of Neutral Particle Transport |
|
|
|
10.1 Basic Approach for Monte Carlo Transport Simulations |
|
|
406 | (1) |
|
|
406 | (3) |
|
10.2.1 Combinatorial Geometry |
|
|
407 | (2) |
|
|
409 | (1) |
|
|
410 | (1) |
|
10.4 Path Length Estimation |
|
|
410 | (4) |
|
10.4.1 Travel Distance in Each Cell |
|
|
410 | (2) |
|
10.4.2 Convex Versus Concave Cells |
|
|
412 | (1) |
|
10.4.3 Effect of Computer Precision |
|
|
412 | (2) |
|
10.5 Purely Absorbing Media |
|
|
414 | (1) |
|
|
415 | (7) |
|
10.6.1 Scattering Interactions |
|
|
416 | (4) |
|
10.6.2 Photon Scattering From a Free Electron |
|
|
420 | (1) |
|
10.6.3 Neutron Scattering |
|
|
421 | (1) |
|
|
422 | (1) |
|
|
423 | (1) |
|
|
423 | (8) |
|
10.9.1 Fluence Averaged Over a Surface |
|
|
424 | (1) |
|
10.9.2 Fluence in a Volume: Path Length Estimator |
|
|
425 | (1) |
|
10.9.3 Fluence in a Volume: Reaction Density Estimator |
|
|
426 | (1) |
|
10.9.4 Average Current Through a Surface |
|
|
427 | (1) |
|
10.9.5 Fluence at a Point: Next-Event Estimator |
|
|
428 | (2) |
|
10.9.6 Flow Through a Surface: Leakage Estimator |
|
|
430 | (1) |
|
10.10 An Example of One-Speed Particle Transport |
|
|
431 | (3) |
|
10.11 Monte Carlo Based on the Integral Transport Equation |
|
|
434 | (5) |
|
10.11.1 The Integral Transport Equation |
|
|
434 | (4) |
|
10.11.2 The Integral Equation Method as Simulation |
|
|
438 | (1) |
|
10.12 Variance Reduction and Nonanalog Methods |
|
|
439 | (4) |
|
10.12.1 Importance Sampling |
|
|
439 | (2) |
|
10.12.2 Truncation Methods |
|
|
441 | (1) |
|
10.12.3 Splitting and Russian Roulette |
|
|
441 | (1) |
|
10.12.4 Implicit Absorption |
|
|
441 | (1) |
|
10.12.5 Interaction Forcing |
|
|
442 | (1) |
|
10.12.6 Exponential Transformation |
|
|
442 | (1) |
|
|
443 | (4) |
|
|
443 | (2) |
|
|
445 | (2) |
|
A Some Common Probability Distributions |
|
|
|
A.1 Discrete Distributions |
|
|
447 | (17) |
|
A.I.1 Bernoulli Distribution |
|
|
449 | (1) |
|
A.1.2 Binomial Distribution |
|
|
450 | (4) |
|
A.1.3 Geometric Distribution |
|
|
454 | (1) |
|
A.1.4 Negative Binomial Distribution |
|
|
454 | (3) |
|
A.1.5 Hypergeometric Distribution |
|
|
457 | (2) |
|
A.1.6 Negative Hypergeometric Distribution |
|
|
459 | (2) |
|
A.1.7 Poisson Distribution |
|
|
461 | (3) |
|
A.2 Continuous Distributions |
|
|
464 | (23) |
|
A.2.1 Uniform Distribution |
|
|
465 | (2) |
|
A.2.2 Exponential Distribution |
|
|
467 | (2) |
|
|
469 | (3) |
|
|
472 | (3) |
|
A.2.5 Weibull Distribution |
|
|
475 | (2) |
|
A.2.6 Normal Distribution |
|
|
477 | (1) |
|
A.2.7 Lognormal Distribution |
|
|
478 | (2) |
|
A.2.8 Cauchy Distribution |
|
|
480 | (1) |
|
A.2.9 Logbeta Distribution |
|
|
481 | (2) |
|
A.2.10 Chi-Squared Distribution |
|
|
483 | (1) |
|
A.2.11 Student's t Distribution |
|
|
484 | (2) |
|
A.2.12 Pareto Distribution |
|
|
486 | (1) |
|
|
487 | (10) |
|
A.3.1 Multivariate Normal Distribution |
|
|
488 | (1) |
|
A.3.2 Multinomial Distribution |
|
|
489 | (2) |
|
A.3.3 Dirichlet Distribution |
|
|
491 | (2) |
|
|
493 | (4) |
|
B The Weak and Strong Laws of Large Numbers |
|
|
|
B.1 The Weak Law of Large Numbers |
|
|
497 | (2) |
|
B.2 The Strong Law of Large Numbers |
|
|
499 | (2) |
|
B.2.1 Difference Between the Weak and Strong Laws |
|
|
499 | (1) |
|
|
500 | (1) |
|
|
500 | (1) |
|
|
|
C.1 Moment-Generating Functions |
|
|
501 | (3) |
|
|
502 | (1) |
|
C.1.2 Some Properties of the Moment-Generating Function |
|
|
502 | (2) |
|
C.1.3 Uniqueness of the Moment-Generating Function |
|
|
504 | (1) |
|
C.2 The Central Limit Theorem |
|
|
504 | (3) |
|
|
506 | (1) |
|
|
|
|
507 | (1) |
|
|
507 | (1) |
|
D.3 Adjoint of a Linear Operator |
|
|
508 | (3) |
|
D.4 Uses of the Adjoint Operator |
|
|
511 | (6) |
|
D.4.1 The Forward and Adjoint Problems |
|
|
511 | (1) |
|
D.4.2 Solution Using the Green's Function |
|
|
512 | (2) |
|
D.4.3 Relation Between Forward and Adjoint Green's Functions |
|
|
514 | (1) |
|
D.4.4 Time-Dependent Green's Functions |
|
|
514 | (1) |
|
D.4.5 Finding Averages of the Solution |
|
|
515 | (2) |
|
D.5 Eigenfunctions and Eigenvalues of an Operator |
|
|
517 | (5) |
|
D.5.1 Properties of Eigenfunctions |
|
|
520 | (2) |
|
D.6 Eigenfunctions of Real, Linear, Self-Adjoint Operators |
|
|
522 | (5) |
|
D.6.1 Eigenvalues Are Real |
|
|
523 | (1) |
|
D.6.2 Eigenfunctions Are Orthogonal |
|
|
524 | (1) |
|
D.6.3 Real Eigenfunctions |
|
|
525 | (1) |
|
D.6.4 Eigenfunctions Form a Complete Basis Set |
|
|
525 | (2) |
|
D.7 The Sturm--Liouville Operator |
|
|
527 | (4) |
|
D.7.1 Boundary Conditions to Make Hermitian |
|
|
528 | (2) |
|
D.7.2 Some Eigenfunction Properties |
|
|
530 | (1) |
|
D.7.3 Important Applications of Sturm-Liouville Theory |
|
|
531 | (1) |
|
D.8 Generalized Fourier Series |
|
|
531 | (3) |
|
D.8.1 Fourier--Legendre Series |
|
|
532 | (1) |
|
D.8.2 Fourier--Bessel Series |
|
|
532 | (2) |
|
D.9 Solving Inhomogeneous Ordinary Differential Equations |
|
|
534 | (5) |
|
D.9.1 Method 1: Find a Particular Solution |
|
|
534 | (1) |
|
D.9.2 Method 2: Use the Green's Function |
|
|
535 | (1) |
|
D.9.3 Method 3: The Eigenfunction Expansion Technique |
|
|
535 | (2) |
|
|
537 | (2) |
|
E Some Popular Monte Carlo Codes for Particle Transport |
|
|
|
|
539 | (1) |
|
|
540 | (1) |
|
|
541 | (2) |
|
|
543 | (1) |
|
|
544 | (2) |
|
|
546 | (2) |
|
|
548 | (2) |
|
|
550 | (1) |
|
|
551 | (2) |
|
F Minimal Standard Pseudorandom Number Generator |
|
|
|
|
553 | (1) |
|
|
554 | (1) |
|
|
554 | (1) |
|
|
555 | (1) |
|
F.5 Programming Considerations |
|
|
555 | (2) |
|
|
556 | (1) |
Index |
|
557 | |