Muutke küpsiste eelistusi

E-raamat: Exploring Monte Carlo Methods

(Professor and former Department Head of the Mechanical and Nuclear Engineering Department, Kansas State University, Department of Mechanical and Nuclear Engineering, Manhattan, USA), (Faculty Member, Kansas State University, Department )
  • Formaat: PDF+DRM
  • Ilmumisaeg: 07-Jun-2022
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128197455
  • Formaat - PDF+DRM
  • Hind: 140,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 07-Jun-2022
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128197455

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Exploring Monte Carlo Methods, Second Edition provides a valuable introduction to the numerical methods that have come to be known as "Monte Carlo." This unique and trusted resource for course use, as well as researcher reference, offers accessible coverage, clear explanations and helpful examples throughout. Building from the basics, the text also includes applications in a variety of fields, such as physics, nuclear engineering, finance and investment, medical modeling and prediction, archaeology, geology and transportation planning.
  • Provides a comprehensive yet concise treatment of Monte Carlo methods
  • Uses the famous "Buffon’s needle problem" as a unifying theme to illustrate the many aspects of Monte Carlo methods
  • Includes numerous exercises and useful appendices on: Certain mathematical functions, Bose Einstein functions, Fermi Dirac functions and Watson functions
About the Authors xvii
Preface to the Second Edition xix
Preface to the First Edition xxi
1 Introduction
1.1 What Is Monte Carlo?
2(1)
1.2 A Brief History of Monte Carlo
3(8)
1.3 Monte Carlo as Quadrature
11(4)
1.4 Monte Carlo as Simulation
15(3)
1.5 Preview of Things to Come
18(1)
1.6 Summary
19(7)
Problems
19(4)
References
23(3)
2 The Basis of Monte Carlo
2.1 Functions of a Single Continuous Random Variable
26(8)
2.1.1 Probability Density Function
26(1)
2.1.2 Cumulative Distribution Function
27(1)
2.1.3 Some Example Distributions
27(3)
2.1.4 Population Mean, Variance, and Standard Deviation
30(1)
2.1.5 Sample Mean, Variance, and Standard Deviation
31(3)
2.2 Discrete Random Variables
34(3)
2.2.1 Special Cases of Discrete Distributions
36(1)
2.3 Multiple Random Variables
37(5)
2.3.1 Two Random Variables
37(2)
2.3.2 More Than Two Random Variables
39(1)
2.3.3 Sums of Random Variables
40(2)
2.4 The Law of Large Numbers
42(1)
2.5 The Central Limit Theorem
43(3)
2.6 Monte Carlo Quadrature
46(2)
2.7 Monte Carlo Simulation
48(3)
2.8 Summary
51(4)
Problems
52(1)
References
53(2)
3 Pseudorandom Number Generators
3.1 Pseudorandom Numbers
55(5)
3.1.1 Origins of Random Number Generators
57(1)
3.1.2 Properties of Good RNCs
57(2)
3.1.3 Classification of RNGs
59(1)
3.2 Linear Congruential Generators
60(3)
3.2.1 Structure of the Generated Random Numbers
61(2)
3.3 Tests for Linear Congruential Generators
63(2)
3.3.1 Spectral Test
64(1)
3.3.2 Number of Hyperplanes
64(1)
3.3.3 Distance Between Points
65(1)
3.3.4 Other Tests
65(1)
3.4 Practical Multiplicative Congruential Generators
65(3)
3.4.1 Generators with m = 2"
66(1)
3.4.2 Prime Modulus Generators
67(1)
3.5 A Minimal Standard Congruential Generator
68(6)
3.5.1 Coding the Minimal Standard
69(2)
3.5.2 Deficiencies of the Minimal Standard Generator
71(1)
3.5.3 Optimum Multipliers for Prime Modulus Generators
71(1)
3.5.4 Shuffling a Generator's Output
72(1)
3.5.5 Refinement of the Minimal Standard
73(1)
3.6 Skipping Ahead
74(1)
3.7 Combining Generators
74(2)
3.7.1 Bit Mixing
75(1)
3.7.2 The Wichmann--Hill Generator
75(1)
3.7.3 The L'Ecuyer Generator
76(1)
3.8 Other Congruential Random Number Generators
76(3)
3.8.1 Multiple Recursive Generators
77(1)
3.8.2 Lagged Fibonacci Generators
77(1)
3.8.3 Add-with-Carry Generators
78(1)
3.8.4 Inversive Congruential Generators
78(1)
3.8.5 Nonlinear Congruential Generators
79(1)
3.9 RNGs Using Linear Feedback Shift Registers
79(4)
3.9.1 The Tausworthe Bit-Level RNG
79(4)
3.10 What Is a Linear Feedback Shift Register?
83(7)
3.10.1 Random Numbers From Random Bits
85(2)
3.10.2 LFSR Extensions
87(1)
3.10.3 Mersenne Twister
88(2)
3.11 RNGs Based on Cellular Automata
90(8)
3.11.1 One-Dimensional Cellular Automata
91(3)
3.11.2 Random Number Generation From Cellular Automata
94(2)
3.11.3 Calculating Elementary Cellular Automata
96(1)
3.11.4 Some CA-Based RNGs
97(1)
3.12 "Recent" Random Number Generators
98(3)
3.12.1 Some RNG Developments in the Last 30 Years
99(2)
3.13 Assessment Tests for RNGs
101(2)
3.13.1 Basic Statistical Tests
101(1)
3.13.2 The Diehard Test Suite
101(1)
3.13.3 The Dieharder Test Suite
102(1)
3.13.4 Other Test Libraries for RNCs
103(1)
3.14 Summary
103(8)
Problems
105(2)
References
107(4)
4 Sampling, Scoring, and Precision
4.1 Sampling
111(19)
4.1.1 Inverse CDF Method for Continuous Variables
112(3)
4.1.2 Inverse CDF Method for Discrete Variables
115(1)
4.1.3 Sampling by Table Lookup
116(5)
4.1.4 Rejection Method
121(3)
4.1.5 Composition Method
124(1)
4.1.6 Rectangle-Wedge-Tail Decomposition Method
125(1)
4.1.7 Sampling From a Nearly Linear PDF
126(1)
4.1.8 Composition-Rejection Method
127(1)
4.1.9 Ratio of Uniforms Method
127(1)
4.1.10 Sampling From a Joint Distribution
128(1)
4.1.11 Sampling From Specific Distributions
128(2)
4.2 Scoring
130(7)
4.2.1 Use of Weights in Scoring
131(2)
4.2.2 Scoring for "Successes-Over-Trials" Simulation
133(1)
4.2.3 Scoring for Multidimensional Integrals
134(1)
4.2.4 Statistical Tests to Assess Results
135(2)
4.3 Accuracy and Precision
137(6)
4.3.1 Factors Affecting Accuracy
138(1)
4.3.2 Factors Affecting Precision
139(2)
4.3.3 The Use of Batches
141(2)
4.4 Summary
143(11)
Problems
145(3)
References
148(6)
5 Variance Reduction Techniques
5.1 Use of Transformations
154(2)
5.2 Importance Sampling
156(5)
5.2.1 Application to Monte Carlo Integration
160(1)
5.3 Systematic Sampling
161(5)
5.3.1 Comparison to Straightforward Sampling
164(1)
5.3.2 Systematic Sampling to Evaluate an Integral
165(1)
5.3.3 Systematic Sampling as Importance Sampling
166(1)
5.4 Stratified Sampling
166(3)
5.4.1 Comparison to Straightforward Sampling
167(1)
5.4.2 Importance Sampling Versus Stratified Sampling
168(1)
5.5 Correlated Sampling
169(7)
5.5.1 Correlated Sampling with One Known Expected Value
170(2)
5.5.2 Antithetic Variates
172(4)
5.6 Partition of Integration Volume
176(1)
5.7 Reduction of Dimensionality
177(1)
5.8 Russian Roulette and Splitting
178(2)
5.8.1 Application to Monte Carlo Simulation
179(1)
5.9 Combinations of Different Variance Reduction Methods
180(1)
5.10 Biased Estimators
181(1)
5.11 Improved Monte Carlo Integration Schemes
182(3)
5.11.1 Weighted Monte Carlo Integration
183(1)
5.11.2 Monte Carlo Integration with Quasi-Random Numbers
184(1)
5.12 Summary
185(4)
Problems
185(2)
References
187(2)
6 Markov Chain Monte Carlo
6.1 Review of the Ordinary Monte Carlo Method
189(2)
6.2 Markov Chains to the Rescue
191(29)
6.2.1 A Discrete Random Variable
192(3)
6.2.2 A Continuous Random Variable
195(1)
6.2.3 MCMC Versus OMC
196(3)
6.2.4 The Metropolis-Hastings Algorithm
199(5)
6.2.5 The Myth of Burn-in
204(2)
6.2.6 The M-H Independence Sampler
206(5)
6.2.7 Selecting a Proposal Distribution
211(1)
6.2.8 Multidimensional Sampling
212(3)
6.2.9 The Gibbs Sampler
215(4)
6.2.10 The Problem of High Dimensionality
219(1)
6.3 Brief Review of Probability Concepts
220(12)
6.3.1 Bayes' Theorem
222(3)
6.3.2 Extending the Application of Bayes' Theorem
225(2)
6.3.3 Probability and Confidence Intervals
227(3)
6.3.4 Conjugate Prior Distributions
230(2)
6.4 Use of MCMC in Bayesian Analysis
232(9)
6.4.1 Using MCMC to Calculate the Posterior PDF
232(4)
6.4.2 MCMC and Nonconjugate Prior PDFs
236(2)
6.4.3 Estimating the Prior Distribution
238(2)
6.4.4 Failure Rate Analysis
240(1)
6.5 Inference and Decision Applications
241(7)
6.5.1 Implementing MCMC with Data
243(1)
6.5.2 The Likelihood Function
244(4)
6.6 Summary
248(10)
Problems
250(2)
References
252(6)
7 Inverse Monte Carlo
7.1 Formulation of the Inverse Problem
258(3)
7.1.1 Integral Formulation
258(1)
7.1.2 Practical Formulation
259(1)
7.1.3 Optimization Formulation
260(1)
7.1.4 Monte Carlo Approaches to Solving Inverse Problems
261(1)
7.2 Inverse Monte Carlo by Iteration
261(2)
7.3 Symbolic Monte Carlo
263(18)
7.3.1 Uncertainties in Retrieved Values
264(2)
7.3.2 The PDF Is Fully Known
266(4)
7.3.3 The PDF Is Unknown
270(8)
7.3.4 Unknown Parameter in Domain of x
278(3)
7.4 Inverse Monte Carlo by Simulation
281(2)
7.4.1 A Simple Two-Dimensional World
281(2)
7.5 General Applications of IMC
283(4)
7.5.1 Radiative Transfer
284(2)
7.5.2 Photon Beam Modifier Design
286(1)
7.5.3 Energy-Dispersive X-Ray Fluorescence
286(1)
7.6 Summary
287(4)
Problems
288(1)
References
289(2)
8 Linear Operator Equations
8.1 Linear Algebraic Equations
291(9)
8.1.1 Solution of Linear Equations by Random Walks
293(4)
8.1.2 Solving the Adjoint Linear Equations by Random Walks
297(1)
8.1.3 Solution of Linear Equations by Finite Random Walks
298(2)
8.1.4 Recent Interest in Monte Carlo Linear Equation Solvers
300(1)
8.2 Linear Integral Equations
300(7)
8.2.1 Frequently Encountered Integral Equations
301(1)
8.2.2 Approximating Integral Equations by Algebraic Equations
302(1)
8.2.3 Monte Carlo Solution of a Simple Integral Equation
303(2)
8.2.4 A More General Procedure for Integral Equations
305(2)
8.3 Ordinary Differential Equations
307(31)
8.3.1 Reduction to First-Order Equations
310(1)
8.3.2 Monte Carlo Solution of Initial Value Problems
310(3)
8.3.3 Monte Carlo Solution of Partial Differential Equations
313(2)
8.3.4 Discretization of Poisson's Equation
315(2)
8.3.5 Discrete Random Walks for Poisson's Equation
317(5)
8.3.6 Continuous Random Walks for the 2-D Laplace's Equation
322(3)
8.3.7 Continuous Monte Carlo for 2-D Poisson Equation
325(1)
8.3.8 Other Boundary Conditions
326(3)
8.3.9 Extension to Three Dimensions
329(1)
8.3.10 Continuous Monte Carlo for the 3-D Poisson Equation
330(3)
8.3.11 Continuous Monte Carlo for the 2-D Helmholtz Equation
333(4)
8.3.12 The 3-D Helmholtz Equation
337(1)
8.4 Transient Partial Differential Equations
338(15)
8.4.1 Reverse-Time Monte Carlo
338(8)
8.4.2 Green's Function Approach
346(7)
8.5 Eigenvalue Problems
353(9)
8.5.1 Matrix Eigenvalue Problem
353(3)
8.5.2 Eigenvalues of Integral Operators
356(5)
8.5.3 Eigenvalues of Differential Operators
361(1)
8.6 Summary
362(8)
Problems
362(5)
References
367(3)
9 The Fundamentals of Neutral Particle Transport
9.1 Description of the Radiation Field
370(6)
9.1.1 Directions and Solid Angles
370(2)
9.1.2 Particle Density
372(1)
9.1.3 Flux Density
373(1)
9.1.4 Fluence
374(1)
9.1.5 Current Vector
375(1)
9.2 Radiation Interactions with the Medium
376(10)
9.2.1 Interaction Coefficient/Macroscopic Cross Section
376(2)
9.2.2 Attenuation of Uncollided Radiation
378(1)
9.2.3 Average Travel Distance Before an Interaction
379(1)
9.2.4 Scattering Interaction Coefficients
380(1)
9.2.5 Microscopic Cross Sections
381(3)
9.2.6 Reaction Rate Density
384(2)
9.3 Transport Equation
386(5)
9.3.1 One-Speed Transport Equation in Plane Geometry
390(1)
9.4 Integral Forms of the Transport Equation
391(6)
9.4.1 Integral Equation for the Angular Flux Density
391(4)
9.4.2 Integral Equations for Integrals of φ(r, E, Ω)
395(1)
9.4.3 Explicit Form for the Scalar Flux Density
396(1)
9.4.4 Alternate Forms of the Integral Transport Equation
396(1)
9.5 Adjoint Transport Equation
397(4)
9.5.1 Derivation of the Adjoint Transport Equation
398(2)
9.5.2 Utility of the Adjoint Solution
400(1)
9.6 Summary
401(5)
Problems
402(1)
References
403(3)
10 Monte Carlo Simulation of Neutral Particle Transport
10.1 Basic Approach for Monte Carlo Transport Simulations
406(1)
10.2 Geometry
406(3)
10.2.1 Combinatorial Geometry
407(2)
10.3 Sources
409(1)
10.3.1 Isotropic Sources
410(1)
10.4 Path Length Estimation
410(4)
10.4.1 Travel Distance in Each Cell
410(2)
10.4.2 Convex Versus Concave Cells
412(1)
10.4.3 Effect of Computer Precision
412(2)
10.5 Purely Absorbing Media
414(1)
10.6 Type of Collision
415(7)
10.6.1 Scattering Interactions
416(4)
10.6.2 Photon Scattering From a Free Electron
420(1)
10.6.3 Neutron Scattering
421(1)
10.7 Time Dependence
422(1)
10.8 Particle Weights
423(1)
10.9 Scoring and Tallies
423(8)
10.9.1 Fluence Averaged Over a Surface
424(1)
10.9.2 Fluence in a Volume: Path Length Estimator
425(1)
10.9.3 Fluence in a Volume: Reaction Density Estimator
426(1)
10.9.4 Average Current Through a Surface
427(1)
10.9.5 Fluence at a Point: Next-Event Estimator
428(2)
10.9.6 Flow Through a Surface: Leakage Estimator
430(1)
10.10 An Example of One-Speed Particle Transport
431(3)
10.11 Monte Carlo Based on the Integral Transport Equation
434(5)
10.11.1 The Integral Transport Equation
434(4)
10.11.2 The Integral Equation Method as Simulation
438(1)
10.12 Variance Reduction and Nonanalog Methods
439(4)
10.12.1 Importance Sampling
439(2)
10.12.2 Truncation Methods
441(1)
10.12.3 Splitting and Russian Roulette
441(1)
10.12.4 Implicit Absorption
441(1)
10.12.5 Interaction Forcing
442(1)
10.12.6 Exponential Transformation
442(1)
10.13 Summary
443(4)
Problems
443(2)
References
445(2)
A Some Common Probability Distributions
A.1 Discrete Distributions
447(17)
A.I.1 Bernoulli Distribution
449(1)
A.1.2 Binomial Distribution
450(4)
A.1.3 Geometric Distribution
454(1)
A.1.4 Negative Binomial Distribution
454(3)
A.1.5 Hypergeometric Distribution
457(2)
A.1.6 Negative Hypergeometric Distribution
459(2)
A.1.7 Poisson Distribution
461(3)
A.2 Continuous Distributions
464(23)
A.2.1 Uniform Distribution
465(2)
A.2.2 Exponential Distribution
467(2)
A.2.3 Gamma Distribution
469(3)
A.2.4 Beta Distribution
472(3)
A.2.5 Weibull Distribution
475(2)
A.2.6 Normal Distribution
477(1)
A.2.7 Lognormal Distribution
478(2)
A.2.8 Cauchy Distribution
480(1)
A.2.9 Logbeta Distribution
481(2)
A.2.10 Chi-Squared Distribution
483(1)
A.2.11 Student's t Distribution
484(2)
A.2.12 Pareto Distribution
486(1)
A.3 Joint Distributions
487(10)
A.3.1 Multivariate Normal Distribution
488(1)
A.3.2 Multinomial Distribution
489(2)
A.3.3 Dirichlet Distribution
491(2)
References
493(4)
B The Weak and Strong Laws of Large Numbers
B.1 The Weak Law of Large Numbers
497(2)
B.2 The Strong Law of Large Numbers
499(2)
B.2.1 Difference Between the Weak and Strong Laws
499(1)
B.2.2 Other Subtleties
500(1)
References
500(1)
C Central Limit Theorem
C.1 Moment-Generating Functions
501(3)
C.1.1 Central Moments
502(1)
C.1.2 Some Properties of the Moment-Generating Function
502(2)
C.1.3 Uniqueness of the Moment-Generating Function
504(1)
C.2 The Central Limit Theorem
504(3)
References
506(1)
D Linear Operators
D.1 Linear Operators
507(1)
D.2 Inner Product
507(1)
D.3 Adjoint of a Linear Operator
508(3)
D.4 Uses of the Adjoint Operator
511(6)
D.4.1 The Forward and Adjoint Problems
511(1)
D.4.2 Solution Using the Green's Function
512(2)
D.4.3 Relation Between Forward and Adjoint Green's Functions
514(1)
D.4.4 Time-Dependent Green's Functions
514(1)
D.4.5 Finding Averages of the Solution
515(2)
D.5 Eigenfunctions and Eigenvalues of an Operator
517(5)
D.5.1 Properties of Eigenfunctions
520(2)
D.6 Eigenfunctions of Real, Linear, Self-Adjoint Operators
522(5)
D.6.1 Eigenvalues Are Real
523(1)
D.6.2 Eigenfunctions Are Orthogonal
524(1)
D.6.3 Real Eigenfunctions
525(1)
D.6.4 Eigenfunctions Form a Complete Basis Set
525(2)
D.7 The Sturm--Liouville Operator
527(4)
D.7.1 Boundary Conditions to Make Hermitian
528(2)
D.7.2 Some Eigenfunction Properties
530(1)
D.7.3 Important Applications of Sturm-Liouville Theory
531(1)
D.8 Generalized Fourier Series
531(3)
D.8.1 Fourier--Legendre Series
532(1)
D.8.2 Fourier--Bessel Series
532(2)
D.9 Solving Inhomogeneous Ordinary Differential Equations
534(5)
D.9.1 Method 1: Find a Particular Solution
534(1)
D.9.2 Method 2: Use the Green's Function
535(1)
D.9.3 Method 3: The Eigenfunction Expansion Technique
535(2)
References
537(2)
E Some Popular Monte Carlo Codes for Particle Transport
E.1 COG
539(1)
E.2 EGSnrc
540(1)
E.3 CEANT4
541(2)
E.4 MCSHAPE
543(1)
E.5 MCNP6
544(2)
E.6 PENELOPE
546(2)
E.7 SCALE
548(2)
E.8 SRIM
550(1)
E.9 TRIPOLI
551(2)
F Minimal Standard Pseudorandom Number Generator
F.1 FORTRAN77
553(1)
F.2 FORTRAN90
554(1)
F.3 Pascal
554(1)
F.4 C and C++
555(1)
F.5 Programming Considerations
555(2)
References
556(1)
Index 557
Dr. Bill Dunn graduated with a BS degree in Electrical Engineering from the University of Notre Dame and MS and PhD degrees in Nuclear Engineering from North Carolina State University (NCSU). He was employed by Carolina Power & Light Company for four years and then served on the faculty and staff of the Nuclear Engineering Department at NCSU for two years. From 1979 until 2002, Dr. Dunn was involved in contract research. From 1988 until 2002, he was President of Quantum Research Services. He is now Professor and former Department Head of the Mechanical and Nuclear Engineering Department at Kansas State University. He is an editor of the journal Radiation Physics and Chemistry and Treasurer of the International Radiation Physics Society. In 2015, Dr. Dunn was recognized with the Radiation Science and Technology Award by the American Nuclear Society. J. Kenneth Shultis, born in Toronto, Canada, graduated from the University of Toronto with a BASc degree in Engineering Physics (1964). He gained his MS (1965) and PhD (1968) degrees in Nuclear Science and Engineering from the University of Michigan. After a postdoctoral year at the Mathematics Institute of the University of Groningen, the Netherlands, he joined the Nuclear Engineering faculty at Kansas State University in 1969. He teaches and conducts research in radiation transport, radiation shielding, Monte Carlo methods, reactor physics, optimization of new type of radiation detectors, numerical analysis, particle combustion, remote sensing, and utility energy and economic analyses. He is a Fellow of the American Nuclear Society, and has received many awards for his teaching and research. Dr. Shultis is the author or co-author of 6 text books on radiation shielding, radiological assessment, nuclear science and technology, and Monte Carlo methods. He has written over 200 research papers and reports, and served as a consultant to many private and governmental organizations.