Muutke küpsiste eelistusi

E-raamat: Explosive Welding: Processes and Structures

  • Formaat: 242 pages
  • Ilmumisaeg: 08-Aug-2019
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000712971
  • Formaat - EPUB+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 242 pages
  • Ilmumisaeg: 08-Aug-2019
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000712971

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This reference explores explosion welding, a high intensity, transient impact that achieves metal compounds not obtainable otherwise. It examines weldable pairs with different solubility than their initial elements. The book is intended for a wide range of experts involved in explosion welding, for engineers, graduate and post graduate students.

This reference explores explosion welding, a high intensity, transient impact that achieves metal compounds not obtainable otherwise. Electron microscopy images cover the structure of numerous welded joints including titanium–orthorhombic titanium aluminide, copper–tantalum, aluminum–tantalum, iron–silver, steel–steel, and copper–titanium. These weldable pairs have different solubility than their initial elements. The authors present various processes and structures including granulating fragmentation, cusps, splashes, and quasi-wave interface. Specific risk zones for chemical and petrochemical (coke chamber) reactors are probed and suggestions offered.

Key Features:

  • Offers new theories about explosion welding processes and structures
  • Investigates dozens of weldable pairs with differing solubility from initial elements
  • Studies both hetero- and homogeneous pairs
  • Explores welded joints with flat, wavy and quasi-wavy separation boundaries
  • Observes irregularities of the separation surface relief observing asperities and splashes and their transformation under intensified welding modes
    • Unveils a new type of fragmentation under explosion welding
  • Explosive Welding: Processes and Structures

    is a valuable resource for a wide range of experts involved in explosion welding, engineers, as well as graduate and postgraduate students.

    1 Introduction
    1(6)
    2 Materials and joints
    7(4)
    3 Experimental results
    11(63)
    3.1 Titanium-orthorhombic titanium aluminide
    11(25)
    3.1.1 (Aw): Titanium -- VTI-1, wavy boundary
    13(14)
    3.1.2 (Bw) welded joint: titanium VTI--4, the-wavy interface
    27(3)
    3.1.3 (Ap) welded joint: titanium--VTI-1, flat melted interface
    30(4)
    3.1.4 (Bp) welded joint titanium---VTI-4, almost flat, partially melted interface
    34(2)
    3.2 Copper--tantalum
    36(12)
    3.2.1 (Cw): copper--tantalum welded joint, flat interface
    36(8)
    3.2.2 (Cw): copper--tantalum, wavy boundary
    44(4)
    3.3 Aluminium--tantalum
    48(20)
    3.3.1 (Ep) aluminium--tantalum welded joint, flat border
    51(3)
    3.3.2 (Ew): aluminium--tantalum, wavy interface
    54(14)
    3.5 Steel--steel
    68(6)
    4 Discussion of results
    74(44)
    4.1 Fragmentation of the granulating type
    74(6)
    4.2 Fragmentation under severe deformation
    80(1)
    4.3 Consolidation of powders with SPD by torsion
    81(19)
    4.3.1 Quartz
    84(3)
    4.3.2 Rock crystal
    87(1)
    4.3.3 X-ray analysis
    88(2)
    4.3.4 Glasses (slide, quartz)
    90(5)
    4.3.5 Glass sticking
    95(2)
    4.3.6 Microcracks
    97(2)
    4.3.7 Conclusion
    99(1)
    4.4 Surface relief: cusps
    100(3)
    4.5 Melting
    103(15)
    4.5.1 Particle scattering and melting
    105(2)
    4.5.2 Colloidal solutions
    107(4)
    4.5.3 Vortex formation
    111(4)
    4.5.4 Melting and gluing
    115(3)
    5 Risk zones when explosive welding
    118(10)
    5.1 Chemical reactor
    118(2)
    5.2 Petrochemical reactor (coke oven)
    120(8)
    6 Fractal analysis of the surface relief
    128(14)
    6.1 Islands
    129(8)
    6.2 Coastline
    137(5)
    7 Evolution of the interface of copper--tantalum and aluminium--tantalum welded joints
    142(13)
    7.1 Material and research methods
    143(1)
    7.2 Relief of the flat surface section
    144(4)
    7.2.1 (Cp↓) copper--tantalum welded joint, below the lower boundary
    144(3)
    7.2.2 (Ep↓) aluminium--tantalum welds below the lower boundary
    147(1)
    7.2.3 (Cp) copper--tantalum welds at the lower boundary
    147(1)
    7.3 Relief of the wavy interface
    148(7)
    7.3.1 (C(a)w), (C(b)w) copper -- tantalum welded joints near (above) the lower boundary
    148(3)
    7.3.2 (C(c)w), (C(d)w) copper--tantalum welded joint above the lower boundary
    151(4)
    8 Evolution of the interface of copper--titanium welded joints
    155(22)
    8.1 Material and research methods
    156(1)
    8.2 Experimental results (copper--titanium)
    156(21)
    8.2.1 Welded joints (4'), (4)
    156(3)
    8.2.2 Welded joints (3)
    159(2)
    8.2.3 Welded joints (1) and (1')
    161(1)
    8.2.4 Welded joints (2) and (2')
    162(1)
    8.2.5 Welded joints (5) and (5')
    163(2)
    8.2.6 The formation of intermetallic welded joints
    165(12)
    9 Welding of homogeneous materials
    177(14)
    9.1 The structure and properties of explosion-produced joints of homogeneous metals and alloys
    177(3)
    9.1.1 Bimetals from aluminium and its alloys
    177(1)
    9.1.2 Steel bimetals
    178(2)
    9.2 The choice of a homogeneous copper--copper pair
    180(1)
    9.3 Welding parameters
    181(2)
    9.4 Experimental results for copper--melchior alloys welded joints
    183(4)
    9.5 Fractal description of the interface for the copper--melchior alloy welded joint
    187(4)
    10 Structure of multilayer composites produced by explosive welding
    191(20)
    10.1 Structure and properties of certain composites
    192(10)
    10.1.1 Steel-based composites
    192(3)
    10.1.2 Magnesium-based composites
    195(4)
    10.1.3 Nb--Cu and Ta--Cu welded joints
    199(3)
    10.2 Multi-layered composites based on Cu--Ta
    202(9)
    10.2.1 Experimental material and procedure
    202(2)
    10.2.2 Microslructure of Cu--Ta multilayer composite materials produced by explosive welding
    204(4)
    10.2.3 Mechanical alloying in the case of torsion under pressure for the Cu--Ta system
    208(3)
    11 Self-organization processes
    211(13)
    11.1 Transitions from splashes to waves
    212(2)
    11.2 Simulation experiments
    214(10)
    References 224(8)
    Index 232
    B.A.Greenberg, Prof. and Department Supervisor at the Russian Academy of Sciences, Russia M.A.Ivanov, Professor and Department Head at G. V. Kurdyumov, National Academy of Sciences of Ukraine S.V.Kuzmin,, Research Scientists at Volgograd State Technical University, Russia V.I.Lysak., Research Scientist at Volgograd State Technical University, Russia