Muutke küpsiste eelistusi

E-raamat: Extended Graphical Calculus for Categorified Quantum sl(2)

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 88,84 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A categorification of the Beilinson-Lusztig-MacPherson form of the quantum sl(2) was constructed in a paper (arXiv:0803.3652) by Aaron D. Lauda. Here the authors enhance the graphical calculus introduced and developed in that paper to include two-morphisms between divided powers one-morphisms and their compositions. They obtain explicit diagrammatical formulas for the decomposition of products of divided powers one-morphisms as direct sums of indecomposable one-morphisms; the latter are in a bijection with the Lusztig canonical basis elements.

These formulas have integral coefficients and imply that one of the main results of Lauda's paper--identification of the Grothendieck ring of his 2-category with the idempotented quantum sl(2)--also holds when the 2-category is defined over the ring of integers rather than over a field. A new diagrammatic description of Schur functions is also given and it is shown that the the Jacobi-Trudy formulas for the decomposition of Schur functions into elementary or complete symmetric functions follows from the diagrammatic relations for categorified quantum sl(2).
Chapter 1 Introduction
1(8)
1.1 The algebra U
1(1)
1.2 Categorification
2(2)
1.3 Diagrammatics for the Karoubi envelope u
4(1)
1.4 Categorification and symmetric functions
5(1)
1.5 Relations to other categorifications
6(3)
Chapter 2 Thick calculus for the nilHecke ring
9(26)
2.1 The nilHecke ring and its diagrammatics
9(2)
2.2 Boxes, thick lines, and splitters
11(7)
2.3 Partitions, symmetric functions, and their diagrammatics
18(7)
2.4 Splitter equations, explosions, and idempotents
25(7)
2.5 The nilHecke algebra as a matrix algebra over its center
32(3)
Chapter 3 Brief review of calculus for categorified sl(2)
35(8)
3.1 The algebra U
35(1)
3.2 The 2-category u
35(5)
3.3 Box notation for u
40(1)
3.4 Karoubi envelope
41(2)
Chapter 4 Thick calculus and u
43(20)
4.1 Thick lines oriented up or down
43(1)
4.2 Splitters as diagrams for the inclusion of a summand
44(1)
4.3 Adding isotopies via thick caps and cups
45(2)
4.4 Thin bubble slides
47(4)
4.5 Thick bubbles
51(7)
4.6 Thick bubble slides and some key lemmas
58(5)
Chapter 5 Decompositions of functors and other applications
63(22)
5.1 Decomposition of ε(a)ε(b)1n
63(1)
5.2 Decomposition of ε(a)F(b)1n
64(15)
5.3 Indecomposables over Z
79(1)
5.4 Bases for HOMs between some 1-morphisms
80(5)
Bibliography 85
Mikhail Khovanov is at Columbia University, New York, USA.

||Aaron D. Lauda is at University of Southern California, USA.

|Marco Mackaay is at Universidade do Algarve, Portugal.

|Marko Stosic is at Instituto Superior Tecnico, Portugal.