Muutke küpsiste eelistusi

E-raamat: Extensions of Linear-Quadratic Control, Optimization and Matrix Theory

Series edited by (National Research Institute ,for Mathematical Sciences
Council for Scientijic and Industrial Research, South Africa
(Honorary Professor in the University of the Witwatersrand))
  • Formaat - PDF+DRM
  • Hind: 123,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation; methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; and methods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.

As a result, the book represents a blend of new methods in general computational analysis, and specific, but also generic, techniques for study of systems theory ant its particular branches, such as optimal filtering and information compression.
Preface
Contents
1 Overview
I Methods of Operator Approximation in System Modelling
2 Nonlinear Operator Approximation with Preassigned Accuracy
2.1 Introduction
2.2 Generic formulation of the problem
2.3 Operator approximation in space C([ 0; 1]):
2.4 Operator approximation in Banach spaces by polynomial operators
2.5 Approximation on compact sets in topological vector spaces
2.6 Approximation on noncompact sets in Hilbert spaces
2.7 Special results for maps into Banach spaces
2.8 Concluding remarks
3 Interpolation of Nonlinear Operators 65
3.1 Introduction
3.2 Lagrange interpolation in Banach spaces
3.3 Weak interpolation of nonlinear operators
3.4 Some related results
3.5 Concluding remarks
4 Realistic Operators and their Approximation
4.1 Introduction
4.2 Formalization of concepts related to description of real-world objects
4.3 Approximation of R¡continuous operators
4.4 Concluding remarks
5 Methods of Best Approximation for Nonlinear Operators
5.1 Introduction
5.2 Best Approximation of nonlinear operators in Banach spaces: Deterministic
case
5.3 Estimation of mean and covariance matrix for random vectors
5.4 Best Hadamard-quadratic approximation
5.5 Best polynomial approximation
5.6 Best causal approximation
5.7 Best hybrid approximations
5.8 Concluding remarks
II Optimal Estimation of Random Vectors
6 Computational Methods for Optimal Filtering of Stochastic Signals
6.1 Introduction
6.2 Optimal linear Filtering in Finite dimensional vector spaces
6.3 Optimal linear Filtering in Hilbert spaces
6.4 Optimal causal linear Filtering with piecewise constant memory
6.5 Optimal causal polynomial Filtering with arbitrarily variable memory
6.6 Optimal nonlinear Filtering with no memory constraint
6.7 Concluding remarks
7 Computational Methods for Optimal Compression and
Reconstruction of Random Data
7.1 Introduction
7.2 Standard Principal Component Analysis and Karhunen-Loeeve transform
(PCA{KLT)
7.3 Rank-constrained matrix approximations
7.4 Generic PCA{KLT
7.5 Optimal hybrid transform based on Hadamard-quadratic approximation
7.6 Optimal transform formed by a combination of nonlinear operators
7.7 Optimal generalized hybrid transform
7.8 Concluding remarks
Bibliography
Index