Muutke küpsiste eelistusi

E-raamat: Extraction of Nuclear and Non-ferrous Metals

  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents a comprehensive overview of non-ferrous metallurgy, especially its core principles and fundamental aspects, in a concise form. The book covers all basic concepts and definitions related to metal extraction, and provide succinct summaries of relevant metallurgical processes. It also covers the scientific and engineering aspects of nuclear processes and features special chapter on ultra-high-purity metals.  The book employs a step-by-step approach, is written in an easy-to-understand style, and discusses significance of core concepts. As such, it not only offers a valuable guide for professionals and researchers working in the areas of metallurgy, mining, and chemical engineering, but can also be used as a core text in both graduate and professional coursework.
Part I Extractive Metallurgy of Nuclear Metals
1 Fundamentals of Nuclear Metallurgy
3(24)
1.1 Atomic Structure
3(1)
1.2 Isotopes
4(1)
1.3 Nuclear Binding Energy
4(2)
1.4 Radioactivity
6(2)
1.5 Rate of Radioactive Decay
8(1)
1.6 Neutron Reaction
9(3)
1.7 Cross-Sections for Neutron Reactions
12(1)
1.8 Multiplication Factors
12(1)
1.9 Types of Reactor
13(1)
1.10 Nuclear Fuel and Breeding Reaction
14(2)
1.11 Cladding Materials
16(1)
1.12 Radiation Damage
16(3)
1.12.1 Atomic Displacement
17(1)
1.12.2 Temperature Spikes
18(1)
1.12.3 Physical Effects of Radiation
18(1)
1.13 Reprocessing of Irradiated Fuel
19(3)
1.13.1 Cooling Irradiated Fuel Elements
20(1)
1.13.2 Head-End Processes
21(1)
1.13.3 Separations or Extraction Process
21(1)
1.14 Processing of Nuclear Metals
22(5)
1.14.1 Separation Processes
24(1)
1.14.2 Extraction Techniques
25(2)
2 Uranium
27(12)
2.1 Introduction
27(1)
2.2 Sources
28(1)
2.3 Extraction of Uranium from Ore
29(6)
2.3.1 Acid Leaching
29(1)
2.3.2 Ion Exchange Separation
29(3)
2.3.3 Production of Reactor Grade Uranyl Nitrate
32(1)
2.3.4 Production of Uranium Dioxide
32(1)
2.3.5 Reduction of Uranium Compounds
33(2)
2.3.6 High Purity Uranium Metal
35(1)
2.4 Properties
35(2)
2.5 Applications
37(2)
3 Plutonium
39(14)
3.1 Introduction
39(1)
3.2 Sources
40(1)
3.3 Extraction of Plutonium
41(7)
3.3.1 Separation of Plutonium
41(6)
3.3.2 Reduction to Plutonium Metal
47(1)
3.3.3 Extraction of Plutonium from Spent Fuel
48(1)
3.4 Properties
48(2)
3.5 Applications
50(3)
4 Zirconium
53(10)
4.1 Introduction
53(1)
4.2 Sources
53(1)
4.3 Exreaction of Zirconium
54(5)
4.3.1 Separation of Zirconium and Hafnium
54(3)
4.3.2 Preparation of Zirconium Oxide
57(1)
4.3.3 Production of Zirconium Tetrachloride
57(1)
4.3.4 Reduction of ZrCl4 by Mg or Na
57(2)
4.4 Properties
59(1)
4.5 Applications
60(3)
5 Hafnium
63(6)
5.1 Introduction
63(1)
5.2 Sources
63(1)
5.3 Extraction of Hafnium
64(2)
5.3.1 Separation of Zirconium and Hafnium
64(1)
5.3.2 Preparation of HfO2
64(1)
5.3.3 Production of Hafnium Metal
64(2)
5.4 Properties
66(1)
5.5 Applications
67(2)
6 Thorium
69(16)
6.1 Introduction
69(1)
6.2 Sources
70(1)
6.3 Extraction of Thorium
70(6)
6.3.1 Separation of Thorium Compound from Monazite
70(4)
6.3.2 Thorium Oxalate Formation
74(1)
6.3.3 Chlorination of Thorium Oxalate
74(1)
6.3.4 Purification of ThCl4
75(1)
6.3.5 Reduction of ThCl4
75(1)
6.3.6 Purification of Thorium Metal
76(1)
6.4 Production of Thorium Powder
76(1)
6.5 Production of Massive Thorium Metal
77(1)
6.6 Properties
78(1)
6.7 Applications
79(6)
Part II Extractive Metallurgy of Common Metals
7 Copper
85(26)
7.1 Introduction
85(1)
7.2 Sources
85(1)
7.3 Extraction of Copper
86(10)
7.3.1 Concentration
86(1)
7.3.2 Roasting
86(2)
7.3.3 Smelting
88(2)
7.3.4 Converting
90(3)
7.3.5 Refining
93(3)
7.4 Newer Processes
96(6)
7.4.1 Flash Smelting Process
98(1)
7.4.2 Continuous Process
99(3)
7.5 TORCO Segregation Process
102(1)
7.6 Recovery of Precious Metals
103(2)
7.7 Hydrometallurgical Process of Copper
105(2)
7.7.1 Ferric Chloride Leaching
105(1)
7.7.2 Leaching of Low Grade Ores
105(1)
7.7.3 Leaching of Roasted Sulphide Concentrates
106(1)
7.8 Properties
107(2)
7.9 Applications
109(2)
8 Aluminium
111(14)
8.1 Introduction
111(1)
8.2 Sources
111(1)
8.3 Extraction of Aluminium
112(10)
8.3.1 Bayer Process
112(3)
8.3.2 Hall-Heroult Process
115(6)
8.3.3 Refining of Aluminium
121(1)
8.4 Properties
122(1)
8.5 Applications
123(2)
9 Zinc
125(12)
9.1 Introduction
125(1)
9.2 Sources
125(1)
9.3 Extraction of Zinc
126(8)
9.3.1 Pyrometallurgical Process
126(6)
9.3.2 Hydrometallurgical Process
132(2)
9.4 Properties
134(1)
9.5 Applications
134(3)
10 Lead
137(12)
10.1 Introduction
137(1)
10.2 Sources
137(1)
10.3 Extraction of Lead
138(8)
10.3.1 Concentration
139(1)
10.3.2 Dead Roasting
139(1)
10.3.3 Smelting
140(3)
10.3.4 Refining
143(3)
10.4 Properties
146(1)
10.5 Applications
146(3)
11 Tin
149(6)
11.1 Introduction
149(1)
11.2 Sources
149(1)
11.3 Extraction of Tin
149(4)
11.3.1 Concentration
150(1)
11.3.2 Reduction of Concentrate
151(1)
11.3.3 Treatments of Slags for Recovery of Metals
151(1)
11.3.4 Refining
152(1)
11.4 Properties
153(1)
11.5 Applications
154(1)
12 Magnesium
155(12)
12.1 Introduction
155(1)
12.2 Sources
155(1)
12.3 Extraction of Magnesium
156(9)
12.3.1 Pyrometallurgical Process
157(4)
12.3.2 Electrometallurgical Process
161(4)
12.3.3 Other Processes for Extraction of Mg
165(1)
12.4 Properties
165(1)
12.5 Applications
165(2)
13 Nickel
167(12)
13.1 Introduction
167(1)
13.2 Sources
167(1)
13.3 Extraction of Nickel
168(5)
13.3.1 Concentration
168(1)
13.3.2 Treatment of Ni--Cu Sulphide Concentrate
169(1)
13.3.3 Refining
170(3)
13.4 Properties
173(1)
13.5 Applications
174(5)
Part III Extractive Metallurgy of Less Common Metals and Ferro-Alloying Metals
14 Silicon
179(6)
14.1 Introduction
179(1)
14.2 Sources
179(1)
14.3 Extraction
180(3)
14.3.1 Metallic Silicon
180(1)
14.3.2 Ferro-Silicon
181(2)
14.4 Properties
183(1)
14.5 Applications
183(2)
15 Manganese
185(8)
15.1 Introduction
185(1)
15.2 Sources
185(1)
15.3 Extraction
186(3)
15.3.1 Beneficiation
186(1)
15.3.2 Metallic Manganese
186(1)
15.3.3 Ferro-Manganese
187(2)
15.4 Properties
189(1)
15.5 Applications
190(3)
16 Chromium
193(8)
16.1 Introduction
193(1)
16.2 Sources
193(1)
16.3 Extraction
194(4)
16.3.1 Metallic Chromium
194(1)
16.3.2 Ferro-Chromium
195(3)
16.4 Properties
198(1)
16.5 Applications
198(3)
17 Tungsten
201(4)
17.1 Introduction
201(1)
17.2 Sources
201(1)
17.3 Extraction
202(1)
17.3.1 Metallic Tungsten
202(1)
17.3.2 Ferro Tungsten
203(1)
17.4 Properties
203(1)
17.5 Application
204(1)
18 Molybdenum
205(6)
18.1 Introduction
205(1)
18.2 Sources
205(1)
18.3 Extraction
206(3)
18.3.1 Concentration of Molybdenite
206(1)
18.3.2 Metallic Molybdenum
207(1)
18.3.3 Calcium Molybdate
208(1)
18.3.4 Ferro-Molybdenum
208(1)
18.4 Properties
209(1)
18.5 Applications
209(2)
19 Vanadium
211(8)
19.1 Introduction
211(1)
19.2 Sources
211(1)
19.3 Extraction
212(5)
19.3.1 Recovery of Vanadium Pentoxide
212(1)
19.3.2 Metallic Vanadium
212(3)
19.3.3 Ferro-Vanadium
215(2)
19.4 Properties
217(1)
19.5 Applications
218(1)
20 Niobium and Tantalum
219(12)
20.1 Introduction
219(1)
20.2 Sources
219(1)
20.3 Extraction
220(6)
20.3.1 Separation of Niobium and Tantalum from Ores
220(1)
20.3.2 Metallic Niobium
220(3)
20.3.3 Metallic Tantalum
223(2)
20.3.4 Ferro-Niobium
225(1)
20.4 Properties
226(1)
20.4.1 Niobium
226(1)
20.4.2 Tantalum
226(1)
20.5 Applications
227(4)
20.5.1 Niobium
227(1)
20.5.2 Tantalum
228(3)
Part IV Production of Ultra-High Purity Metals
21 Methods of Refining
231(12)
21.1 Introduction
231(1)
21.2 Zone Refining
231(2)
21.3 Vacuum Induction Melting
233(1)
21.4 Vacuum Arc Melting
234(3)
21.5 Inert Atmosphere Arc Melting
237(1)
21.6 Electron Beam Melting
238(5)
Appendix 243(2)
Some Thermodynamic Data* 245(2)
Bibliography 247
Dr. Sujay Kumar Dutta is a former Professor and Head of the Department of Metallurgical & Materials Engineering, Maharaja Sayajirao University of Baroda, India. He received his Bachelor of Engineering (Metallurgy) from Calcutta University in 1975 and Master of Engineering (Industrial Metallurgy) from M. S. University of Baroda in 1980. He was awarded his Ph.D. from the Indian Institute of Technology Kanpur, India in 1992. He joined the M. S. University of Baroda as Lecturer in 1981, subsequently being appointed a Reader in 1993 and a Professor in 2001. 

Prof. Dutta has received several awards, including the Essar Gold Medal (2006) from the Indian Institute of Metals, a Fellowship (2014) from the Indian Institute of Metals, and the IIM Distinguished Educator Award (2015) from the Indian Institute of Metals, Kolkata in recognition of his distinguished service to the Metallurgical Education and to the Indian Institute of Metals.

Prof. Dutta has published three books along with other authors: (i) "Metallurgical Thermodynamics, Kinetics and Numericals" (2011), (ii) "Alternate Methods of Ironmaking (Direct Reduction and Smelting Reduction Processes)" (2012), (iii) "Iron OreCoal/Coke Composite Pellets" (2013), and another book (iv) "Extractive Metallurgy (Processes and Applications)" is currently in publication. He has also published 120 papers in national and international journals and conference proceedings. 

Mr. Dharmesh. R. Lodhari is an Assistant Professor at the Department of Metallurgical and Materials Engineering, Maharaja Sayajirao University of Baroda in Gujarat, India. He completed his Bachelor of Engineering in Metallurgy in 1996 and Master of Engineering with specialization in Materials Technology from the M. S. University of Baroda in 2000. Presently he is pursuing his Ph.D. in the field of new alloy development. He has thirteen years of teaching and research experience in the metallurgical field, and has published numerous technicalpapers in national and international journals.