Preface |
|
xi | |
Acknowledgments |
|
xv | |
|
SECTION I FUNDAMENTALS, METHODOLOGY, AND ALGORITHMS |
|
|
|
|
3 | (18) |
|
|
3 | (1) |
|
1.2 Understanding Optimization: From Practical Aspects |
|
|
4 | (5) |
|
1.2.1 Mathematical Optimization |
|
|
4 | (1) |
|
1.2.2 Optimization: From Practical Aspects |
|
|
5 | (1) |
|
1.2.3 Example Applications of Optimization |
|
|
6 | (2) |
|
1.2.4 Problem Solving for Optimization |
|
|
8 | (1) |
|
1.3 Phase Transition and Computational Complexity |
|
|
9 | (2) |
|
1.3.1 Computational Complexity in General |
|
|
9 | (1) |
|
1.3.2 Phase Transition in Computation |
|
|
10 | (1) |
|
1.4 CI-Inspired Optimization |
|
|
11 | (3) |
|
1.4.1 Evolutionary Computations |
|
|
11 | (1) |
|
|
12 | (1) |
|
1.4.3 Data Mining and Machine Learning |
|
|
13 | (1) |
|
1.4.4 Statistical Physics |
|
|
13 | (1) |
|
|
14 | (4) |
|
1.5.1 Self-Organized Criticality and EO |
|
|
14 | (2) |
|
1.5.2 Coevolution, Ecosystems, and Bak--Sneppen Model |
|
|
16 | (1) |
|
1.5.3 Comparing EO with SA and GA |
|
|
17 | (1) |
|
1.5.4 Challenging Open Problems |
|
|
17 | (1) |
|
1.6 Organization of the Book |
|
|
18 | (3) |
|
2 Introduction to Extremal Optimization |
|
|
21 | (16) |
|
2.1 Optimization with Extremal Dynamics |
|
|
21 | (2) |
|
2.2 Multidisciplinary Analysis of EO |
|
|
23 | (1) |
|
2.3 Experimental and Comparative Analysis on the Traveling Salesman Problems |
|
|
24 | (1) |
|
23.1 EO for the Symmetric TSP |
|
|
25 | (10) |
|
2.3.1.1 Problem Formulation and Algorithm Design |
|
|
25 | (2) |
|
2.3.2 SA versus Extremal Dynamics |
|
|
27 | (3) |
|
2.3.3 Optimizing Near the Phase Transition |
|
|
30 | (1) |
|
2.3.4 EO for the Asymmetric TSP |
|
|
31 | (1) |
|
2.3.4.1 Cooperative Optimization |
|
|
32 | (1) |
|
2.3.4.2 Parameter Analysis |
|
|
33 | (2) |
|
|
35 | (2) |
|
3 Extremal Dynamics--Inspired Self-Organizing Optimization |
|
|
37 | (24) |
|
|
37 | (2) |
|
3.2 Analytic Characterization of COPs |
|
|
39 | (12) |
|
3.2.1 Modeling COPs into Multientity Systems |
|
|
39 | (1) |
|
3.2.2 Local Fitness Function |
|
|
40 | (3) |
|
3.2.3 Microscopic Analysis of Optimal Solutions |
|
|
43 | (3) |
|
3.2.4 Neighborhood and Fitness Network |
|
|
46 | (3) |
|
3.2.5 Computational Complexity and Phase Transition |
|
|
49 | (2) |
|
3.3 Self-Organized Optimization |
|
|
51 | (6) |
|
3.3.1 Self-Organized Optimization Algorithm |
|
|
51 | (2) |
|
3.3.2 Comparison with Related Methods |
|
|
53 | (1) |
|
3.3.2.1 Simulated Annealing |
|
|
54 | (1) |
|
3.3.2.2 Genetic Algorithm |
|
|
54 | (1) |
|
3.3.2.3 Extremal Optimization |
|
|
55 | (1) |
|
3.3.3 Experimental Validation |
|
|
55 | (2) |
|
|
57 | (4) |
|
SECTION II MODIFIED EO AND INTEGRATION OF EO WITH OTHER SOLUTIONS TO COMPUTATIONAL INTELLIGENCE |
|
|
|
4 Modified Extremal Optimization |
|
|
61 | (40) |
|
|
61 | (1) |
|
4.2 Modified EO with Extended Evolutionary Probability Distribution |
|
|
61 | (9) |
|
4.2.1 Evolutionary Probability Distribution |
|
|
62 | (2) |
|
4.2.2 Modified EO Algorithm with Extended Evolutionary Probability Distribution |
|
|
64 | (3) |
|
4.2.3 Experimental Results |
|
|
67 | (3) |
|
|
70 | (8) |
|
|
70 | (2) |
|
|
72 | (1) |
|
4.3.3 Experimental Results |
|
|
73 | (1) |
|
4.3.3.1 The Simplest Case: Two-Stage EO |
|
|
73 | (1) |
|
|
74 | (3) |
|
4.3.4 Adjustable Parameters versus Performance |
|
|
77 | (1) |
|
|
78 | (10) |
|
4.4.1 Definitions of Fitness and Backbones |
|
|
80 | (1) |
|
|
81 | (3) |
|
4.4.3 Experimental Results |
|
|
84 | (4) |
|
|
88 | (10) |
|
4.5.1 Problem Formulation of Numerical Constrained Optimization Problems |
|
|
90 | (1) |
|
|
91 | (1) |
|
|
92 | (2) |
|
4.5.4 Experimental Results |
|
|
94 | (3) |
|
|
97 | (1) |
|
|
98 | (3) |
|
5 Memetic Algorithms with Extremal Optimization |
|
|
101 | (64) |
|
|
101 | (1) |
|
5.2 Design Principle of MAs |
|
|
102 | (3) |
|
|
105 | (14) |
|
|
105 | (2) |
|
5.3.2 Problem Statement and Math Formulation |
|
|
107 | (1) |
|
5.3.3 Introduction of LM GS |
|
|
108 | (1) |
|
5.3.4 MA-Based Hybrid EO--LM Algorithm |
|
|
109 | (4) |
|
|
113 | (1) |
|
5.3.6 Experimental Tests on Benchmark Problems |
|
|
114 | (1) |
|
5.3.6.1 A Multi-Input, Single-Output Static Nonlinear Function |
|
|
114 | (2) |
|
5.3.6.2 Five-Dimensional Ackley Function Regression |
|
|
116 | (1) |
|
5.3.6.3 Dynamic Modeling for Continuously Stirred Tank Reactor |
|
|
116 | (3) |
|
|
119 | (19) |
|
|
119 | (2) |
|
5.4.2 Problem Formulation |
|
|
121 | (1) |
|
5.4.3 Introduction of SQP |
|
|
122 | (1) |
|
5.4.4 MA-Based Hybrid EO--SQP Algorithm |
|
|
123 | (2) |
|
5.4.5 Fitness Function Definition |
|
|
125 | (1) |
|
5.4.6 Termination Criteria |
|
|
125 | (1) |
|
5.4.7 Workflow and Algorithm |
|
|
126 | (1) |
|
5.4.8 Experimental Tests on Benchmark Functions |
|
|
127 | (1) |
|
5.4.8.1 Unconstrained Problems |
|
|
128 | (4) |
|
5.4.8.2 Constrained Problems |
|
|
132 | (4) |
|
5.4.9 Dynamics Analysis of the Hybrid EO--SQP |
|
|
136 | (2) |
|
|
138 | (11) |
|
|
138 | (1) |
|
5.5.2 Particle Swarm Optimization |
|
|
139 | (1) |
|
|
140 | (1) |
|
|
140 | (3) |
|
5.5.5 Computational Complexity |
|
|
143 | (1) |
|
5.5.6 Experimental Results |
|
|
143 | (6) |
|
|
149 | (11) |
|
5.6.1 Artificial Bee Colony |
|
|
150 | (3) |
|
|
153 | (1) |
|
|
154 | (1) |
|
5.6.4 Differences between ABC--EO and Other Hybrid Algorithms |
|
|
155 | (1) |
|
5.6.5 Experimental Results |
|
|
155 | (5) |
|
|
160 | (3) |
|
|
163 | (2) |
|
6 Multiobjective Optimization with Extremal Dynamics |
|
|
165 | (50) |
|
|
165 | (2) |
|
6.2 Problem Statement and Definition |
|
|
167 | (1) |
|
6.3 Solutions to Multiobjective Optimization |
|
|
168 | (2) |
|
6.3.1 Aggregating Functions |
|
|
168 | (1) |
|
6.3.2 Population-Based Non-Pareto Approaches |
|
|
169 | (1) |
|
6.3.3 Pareto-Based Approaches |
|
|
169 | (1) |
|
6.4 EO for Numerical MOPs |
|
|
170 | (21) |
|
|
171 | (1) |
|
6.4.1.1 Fitness Assignment |
|
|
171 | (2) |
|
6.4.1.2 Diversity Preservation |
|
|
173 | (1) |
|
|
174 | (1) |
|
6.4.1.4 Mutation Operation |
|
|
175 | (1) |
|
6.4.2 Unconstrained Numerical MOPs with MOEO |
|
|
176 | (1) |
|
6.4.2.1 Performance Metrics |
|
|
176 | (3) |
|
6.4.2.2 Experimental Settings |
|
|
179 | (1) |
|
6.4.2.3 Experimental Results and Discussion |
|
|
179 | (6) |
|
|
185 | (1) |
|
6.4.3 Constrained Numerical MOPs with MOEO |
|
|
185 | (1) |
|
6.4.3.1 Performance Metrics |
|
|
186 | (1) |
|
6.4.3.2 Experimental Settings |
|
|
187 | (1) |
|
6.4.3.3 Experimental Results and Discussion |
|
|
188 | (3) |
|
|
191 | (1) |
|
6.5 Multiobjective 0/1 Knapsack Problem with MOEO |
|
|
191 | (6) |
|
6.5.1 Extended MOEO for MOKP |
|
|
191 | (1) |
|
6.5.1.1 Mutation Operation |
|
|
191 | (1) |
|
|
192 | (1) |
|
6.5.2 Experimental Settings |
|
|
193 | (1) |
|
6.5.3 Experimental Results and Discussion |
|
|
194 | (1) |
|
|
195 | (2) |
|
6.6 Mechanical Components Design with MOEO |
|
|
197 | (6) |
|
|
197 | (1) |
|
6.6.2 Experimental Settings |
|
|
198 | (1) |
|
6.6.2.1 Two-Bar Truss Design (Two Bar for Short) |
|
|
198 | (1) |
|
6.6.2.2 Welded Beam Design (Welded Beam for Short) |
|
|
198 | (1) |
|
6.6.2.3 Machine Tool Spindle Design (Spindle for Short) |
|
|
199 | (2) |
|
6.6.3 Experimental Results and Discussion |
|
|
201 | (1) |
|
|
202 | (1) |
|
6.7 Portfolio Optimization with MOEO |
|
|
203 | (9) |
|
6.7.1 Portfolio Optimization Model |
|
|
203 | (2) |
|
6.7.2 MOEO for Portfolio Optimization Problems |
|
|
205 | (1) |
|
6.7.2.1 Mutation Operation |
|
|
206 | (1) |
|
|
207 | (1) |
|
6.7.3 Experimental Settings |
|
|
207 | (1) |
|
6.7.4 Experimental Results and Discussion |
|
|
208 | (4) |
|
|
212 | (1) |
|
|
212 | (3) |
|
|
|
7 EO for Systems Modeling and Control |
|
|
215 | (56) |
|
|
215 | (1) |
|
7.2 Endpoint Quality Prediction of Batch Production with MA-EO |
|
|
216 | (3) |
|
7.3 EO for Kernel Function and Parameter Optimization in Support Vector Regression |
|
|
219 | (19) |
|
|
221 | (1) |
|
7.3.2 Problem Formulation |
|
|
221 | (1) |
|
7.3.2.1 Support Vector Regression |
|
|
222 | (1) |
|
7.3.2.2 Optimization of SVR Kernel Function and Parameters |
|
|
223 | (1) |
|
7.3.3 Hybrid EO-Based Optimization for SVR Kernel Function and Parameters |
|
|
224 | (1) |
|
7.3.3.1 Chromosome Structure |
|
|
224 | (1) |
|
|
225 | (1) |
|
|
226 | (2) |
|
7.3.4 Experimental Results |
|
|
228 | (1) |
|
7.3.4.1 Approximation of Single-Variable Function |
|
|
228 | (5) |
|
7.3.4.2 Approximation of Multivariable Function |
|
|
233 | (5) |
|
7.4 Nonlinear Model Predictive Control with MA-EO |
|
|
238 | (14) |
|
7.4.1 Problem Formulation for NMPC Based on SVM Model |
|
|
239 | (3) |
|
7.4.2 Real-Time NMPC with SVM and EO-SQP |
|
|
242 | (1) |
|
7.4.2.1 Workflow of Proposed NMPC |
|
|
242 | (2) |
|
7.4.2.2 Encoding Strategy |
|
|
244 | (2) |
|
7.4.2.3 Selection of the Initial Population |
|
|
246 | (1) |
|
7.4.2.4 Termination Criteria of the NLP Solver |
|
|
246 | (1) |
|
7.4.2.5 Horizon-Based EO Mutation for NMPC Online Optimization |
|
|
246 | (1) |
|
|
247 | (5) |
|
7.5 Intelligent PID Control with Binary-Coded EO |
|
|
252 | (15) |
|
7.5.1 PID Controllers and Performance Indices |
|
|
252 | (3) |
|
|
255 | (3) |
|
7.5.3 Experimental Results |
|
|
258 | (1) |
|
7.5.3.1 Single-Variable Controlled Plant |
|
|
258 | (3) |
|
7.5.3.2 Multivariable Controlled Plant |
|
|
261 | (6) |
|
7.5.3.3 Parameters and Control Performances |
|
|
267 | (1) |
|
|
267 | (4) |
|
8 EO for Production Planning and Scheduling |
|
|
271 | (26) |
|
|
271 | (5) |
|
8.1.1 An Overview of HSM Scheduling |
|
|
272 | (1) |
|
|
273 | (1) |
|
8.1.3 Scheduling Objectives and Constraints |
|
|
274 | (2) |
|
|
276 | (4) |
|
8.3 Hybrid Evolutionary Solutions with the Integration of GA and EO |
|
|
280 | (16) |
|
8.3.1 Global Search Algorithm: Modified GA for Order Selection and Sequencing |
|
|
280 | (1) |
|
8.3.1.1 Representation of Solutions |
|
|
280 | (1) |
|
8.3.1.2 Population Initialization |
|
|
281 | (1) |
|
|
282 | (1) |
|
8.3.1.4 Genetic Operators |
|
|
282 | (3) |
|
8.3.2 Local Improving Algorithm: τ-EO |
|
|
285 | (1) |
|
8.3.2.1 Introduction to EO |
|
|
286 | (1) |
|
8.3.2.2 EO for Improving the Body Section |
|
|
286 | (2) |
|
8.3.2.3 Hybrid Evolutionary Algorithms |
|
|
288 | (3) |
|
8.3.3 Design of a HSM-Scheduling System |
|
|
291 | (2) |
|
8.3.4 Computational Results |
|
|
293 | (3) |
|
|
296 | (1) |
References |
|
297 | (18) |
Author Index |
|
315 | (8) |
Subject Index |
|
323 | |