Muutke küpsiste eelistusi

E-raamat: Extreme Values In Random Sequences

Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 135,84 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The main subject is the probabilistic extreme value theory. The purpose is to present recent results related to limiting distributions of maxima in incomplete samples from stationary sequences, and results related to extremal properties of different combinatorial configurations. The necessary contents related to regularly varying functions and basic results of extreme value theory are included in the first two chapters with examples, exercises and supplements. The motivation for consideration maxima in incomplete samples arises from the fact that real data are often incomplete. A sequence of observed random variables from a stationary sequence is also stationary only in very special cases. Hence, the results provided in the third chapter are also related to non-stationary sequences. The proof of theorems related to joint limiting distribution of maxima in complete and incomplete samples requires a non-trivial combination of combinatorics and point process theory. Chapter four provides results on the asymptotic behavior of the extremal characteristics of random permutations, the coupon collector's problem, the polynomial scheme, random trees and random forests, random partitions of finite sets, and the geometric properties of samples of random vectors. The topics presented here provide insight into the natural connections between probability theory and algebra, combinatorics, graph theory and combinatorial geometry.





 





The contents of the book may be useful for graduate students and researchers who are interested in probabilistic extreme value theory and its applications.

Preface.- Regularly Varying Functions.- Basic Results of Extreme Value Theory.- Time Series and Missing Observations.- Combinatorial Problems and Extreme Values.- Bibliography.- Index.