Muutke küpsiste eelistusi

E-raamat: Fairness and Machine Learning: Limitations and Opportunities

  • Formaat - PDF+DRM
  • Hind: 135,20 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"This book offers a critical view on the current practice of machine learning, as well as proposed technical fixes for achieving fairness in automated decisionmaking"--

An introduction to the intellectual foundations and practical utility of the recent work on fairness and machine learning.

Fairness and Machine Learning introduces advanced undergraduate and graduate students to the intellectual foundations of this recently emergent field, drawing on a diverse range of disciplinary perspectives to identify the opportunities and hazards of automated decision-making. It surveys the risks in many applications of machine learning and provides a review of an emerging set of proposed solutions, showing how even well-intentioned applications may give rise to objectionable results. It covers the statistical and causal measures used to evaluate the fairness of machine learning models as well as the procedural and substantive aspects of decision-making that are core to debates about fairness, including a review of legal and philosophical perspectives on discrimination. This incisive textbook prepares students of machine learning to do quantitative work on fairness while reflecting critically on its foundations and its practical utility.

• Introduces the technical and normative foundations of fairness in automated decision-making
• Covers the formal and computational methods for characterizing and addressing problems
• Provides a critical assessment of their intellectual foundations and practical utility
• Features rich pedagogy and extensive instructor resources
Preface ix
Online Materials xiv
Acknowledgments xv
1 Introduction 1
2 When Is Automated Decision Making Legitimate? 25
3 Classification 49
4 Relative Notions of Fairness 83
5 Causality 113
6 Understanding United States Antidiscrimination Law 151
7 Testing Discrimination in Practice 185
8 A Broader View of Discrimination 221
9 Datasets 251
References 285
Index 311