Muutke küpsiste eelistusi

E-raamat: Fat-Tailed Distributions: Data, Diagnostics and Dependence, Volume 1

(Delft University of Technology, The Netherlands), (Erasmus Universiteit Rotterdam), (Warsaw University of Technology)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 11-Nov-2014
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119054191
  • Formaat - PDF+DRM
  • Hind: 171,60 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 11-Nov-2014
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119054191

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This title is written for the numerate nonspecialist, and hopes to serve three purposes. First it gathers mathematical material from diverse but related fields of order statistics, records, extreme value theory, majorization, regular variation and subexponentiality. All of these are relevant for understanding fat tails, but they are not, to our knowledge, brought together in a single source for the target readership. Proofs that give insight are included, but for most fussy calculations the reader is referred to the excellent sources referenced in the text. Multivariate extremes are not treated. This allows us to present material spread over hundreds of pages in specialist texts in twenty pages. Chapter 5 develops new material on heavy tail diagnostics and gives more mathematical detail. Since variances and covariances may not exist for heavy tailed joint distributions, Chapter 6 reviews dependence concepts for certain classes of heavy tailed joint distributions, with a view to regressing heavy tailed variables.

Second, it presents a new measure of obesity. The most popular definitions in terms of regular variation and subexponentiality invoke putative properties that hold at infinity, and this complicates any empirical estimate. Each definition captures some but not all of the intuitions associated with tail heaviness. Chapter 5 studies two candidate indices of tail heaviness based on the tendency of the mean excess plot to collapse as data are aggregated. The probability that the largest value is more than twice the second largest has intuitive appeal but its estimator has very poor accuracy. The Obesity index is defined for a positive random variable X as:

Ob(X) = P (X1 +X4 > X2 +X3|X1 X2 X3 X4), Xi independent copies of X.

For empirical distributions, obesity is defined by bootstrapping. This index reasonably captures intuitions of tail heaviness. Among its properties, if > 1 then Ob(X) < Ob(X). However, it does not completely mimic the tail index of regularly varying distributions, or the extreme value index. A Weibull distribution with shape 1/4 is more obese than a Pareto distribution with tail index 1, even though this Pareto has infinite mean and the Weibulls moments are all finite. Chapter 5 explores properties of the Obesity index.

Third and most important, we hope to convince the reader that fat tail phenomena pose real problems; they are really out there and they seriously challenge our usual ways of thinking about historical averages, outliers, trends, regression coefficients and confidence bounds among many other things. Data on flood insurance claims, crop loss claims, hospital discharge bills, precipitation and damages and fatalities from natural catastrophes drive this point home. While most fat tailed distributions are bad, research in fat tails is one distribution whose tail will hopefully get fatter.
Introduction ix
Chapter 1 Fatness Of Tail
1(26)
1.1 Fat tail heuristics
1(3)
1.2 History and data
4(1)
1.2.1 US flood insurance claims
4(1)
1.2.2 US crop loss
5(1)
1.2.3 US damages and fatalities from natural disasters
5(1)
1.2.4 US hospital discharge bills
6(1)
1.2.5 G-Econ data
6(1)
1.3 Diagnostics for heavy-tailed phenomena
6(1)
1.3.1 Historical averages
7(1)
1.3.2 Records
8(3)
1.3.3 Mean excess
11(1)
1.3.4 Sum convergence: self-similar or normal
12(3)
1.3.5 Estimating the tail index
15(5)
1.3.6 The obesity index
20(4)
1.4 Relation to reliability theory
24(1)
1.5 Conclusion and overview of the technical chapters
25(2)
Chapter 2 Order Statistics
27(14)
2.1 Distribution of order statistics
27(5)
2.2 Conditional distribution
32(1)
2.3 Representations for order statistics
33(3)
2.4 Functions of order statistics
36(1)
2.4.1 Partial sums
36(1)
2.4.2 Ratio between order statistics
37(4)
Chapter 3 Records
41(8)
3.1 Standard record value processes
41(1)
3.2 Distribution of record values
42(2)
3.3 Record times and related statistics
44(2)
3.4 k-records
46(3)
Chapter 4 Regularly Varying And Subexponential Distributions
49(16)
4.1 Classes of heavy-tailed distributions
50(1)
4.1.1 Regularly varying distribution functions
50(5)
4.1.2 Subexponential distribution functions
55(3)
4.1.3 Related classes of heavy-tailed distributions
58(1)
4.2 Mean excess function
59(1)
4.2.1 Properties of the mean excess function
60(5)
Chapter 5 Indices And Diagnostics Of Tail Heaviness
65(30)
5.1 Self-similarity
66(3)
5.1.1 Distribution of the ratio between order statistics
69(7)
5.2 The ratio as index
76(4)
5.3 The obesity index
80(5)
5.3.1 Theory of majorization
85(6)
5.3.2 The obesity index of selected data sets
91(4)
Chapter 6 Dependence
95(20)
6.1 Definition and main properties
95(1)
6.2 Isotropic distributions
96(4)
6.3 Pseudo-isotropic distributions
100(4)
6.3.1 Covariation as a measure of dependence for essentially heavy-tail jointly pseudo-isotropic variables
104(5)
6.3.2 Codifference
109(1)
6.3.3 The linear regression model for essentially heavy-tail distribution
110(5)
Conclusions And Perspectives 115(4)
Bibliography 119(4)
Index 123
Roger M. Cooke, Chauncey Starr Chair for Risk Analysis Resources for the Future, USA and Dept. Math. TU Delft, Netherlands 

Daan Nieboer, Erasmus Universiteit Rotterdam, Department of Public Health (MGZ), Netherlands 

Jolanta Misiewicz, Professor (Full), Warsaw University of Technology, Faculty of Mathematics and Information Science, Mazowieckie, Poland