Preface |
|
xi | |
About the authors |
|
xvii | |
|
|
1 | (36) |
|
|
1 | (1) |
|
1.2 Human and computer vision |
|
|
2 | (2) |
|
1.3 The human vision system |
|
|
4 | (8) |
|
|
5 | (3) |
|
|
8 | (1) |
|
|
9 | (3) |
|
1.4 Computer vision systems |
|
|
12 | (7) |
|
|
12 | (3) |
|
1.4.2 Computer interfaces |
|
|
15 | (2) |
|
1.4.3 Processing an image |
|
|
17 | (2) |
|
|
19 | (11) |
|
|
19 | (1) |
|
1.5.2 Hello Matlab, hello images! |
|
|
20 | (5) |
|
|
25 | (5) |
|
1.6 Associated literature |
|
|
30 | (5) |
|
1.6.1 Journals, magazines, and conferences |
|
|
30 | (1) |
|
|
31 | (3) |
|
|
34 | (1) |
|
|
35 | (1) |
|
|
35 | (2) |
|
Chapter 2 Images, Sampling, and Frequency Domain Processing |
|
|
37 | (46) |
|
|
37 | (1) |
|
|
38 | (4) |
|
2.3 The Fourier transform |
|
|
42 | (7) |
|
2.4 The sampling criterion |
|
|
49 | (4) |
|
2.5 The discrete Fourier transform |
|
|
53 | (10) |
|
|
53 | (4) |
|
|
57 | (6) |
|
2.6 Other properties of the Fourier transform |
|
|
63 | (5) |
|
|
63 | (2) |
|
|
65 | (1) |
|
|
66 | (1) |
|
2.6.4 Superposition (linearity) |
|
|
67 | (1) |
|
2.7 Transforms other than Fourier |
|
|
68 | (10) |
|
2.7.1 Discrete cosine transform |
|
|
68 | (2) |
|
2.7.2 Discrete Hartley transform |
|
|
70 | (1) |
|
2.7.3 Introductory wavelets |
|
|
71 | (7) |
|
|
78 | (1) |
|
2.8 Applications using frequency domain properties |
|
|
78 | (2) |
|
|
80 | (1) |
|
|
81 | (2) |
|
Chapter 3 Basic Image Processing Operations |
|
|
83 | (54) |
|
|
83 | (1) |
|
|
84 | (2) |
|
|
86 | (12) |
|
3.3.1 Basic point operations |
|
|
86 | (3) |
|
3.3.2 Histogram normalization |
|
|
89 | (1) |
|
3.3.3 Histogram equalization |
|
|
90 | (3) |
|
|
93 | (5) |
|
|
98 | (11) |
|
3.4.1 Template convolution |
|
|
98 | (3) |
|
|
101 | (2) |
|
3.4.3 On different template size |
|
|
103 | (1) |
|
3.4.4 Gaussian averaging operator |
|
|
104 | (3) |
|
|
107 | (2) |
|
3.5 Other statistical operators |
|
|
109 | (14) |
|
|
109 | (3) |
|
|
112 | (2) |
|
3.5.3 Anisotropic diffusion |
|
|
114 | (7) |
|
3.5.4 Force field transform |
|
|
121 | (1) |
|
3.5.5 Comparison of statistical operators |
|
|
122 | (1) |
|
3.6 Mathematical morphology |
|
|
123 | (11) |
|
3.6.1 Morphological operators |
|
|
124 | (3) |
|
3.6.2 Gray-level morphology |
|
|
127 | (1) |
|
3.6.3 Gray-level erosion and dilation |
|
|
128 | (2) |
|
3.6.4 Minkowski operators |
|
|
130 | (4) |
|
|
134 | (1) |
|
|
134 | (3) |
|
Chapter 4 Low-Level Feature Extraction (including edge detection) |
|
|
137 | (80) |
|
|
138 | (2) |
|
|
140 | (33) |
|
4.2.1 First-order edge-detection operators |
|
|
140 | (21) |
|
4.2.2 Second-order edge-detection operators |
|
|
161 | (9) |
|
4.2.3 Other edge-detection operators |
|
|
170 | (1) |
|
4.2.4 Comparison of edge-detection operators |
|
|
171 | (2) |
|
4.2.5 Further reading on edge detection |
|
|
173 | (1) |
|
|
173 | (7) |
|
4.4 Localized feature extraction |
|
|
180 | (19) |
|
4.4.1 Detecting image curvature (corner extraction) |
|
|
180 | (13) |
|
4.4.2 Modern approaches: region/patch analysis |
|
|
193 | (6) |
|
4.5 Describing image motion |
|
|
199 | (13) |
|
4.5.1 Area-based approach |
|
|
200 | (4) |
|
4.5.2 Differential approach |
|
|
204 | (7) |
|
4.5.3 Further reading on optical flow |
|
|
211 | (1) |
|
|
212 | (1) |
|
|
212 | (5) |
|
Chapter 5 High-Level Feature Extraction: Fixed Shape Matching |
|
|
217 | (76) |
|
|
218 | (2) |
|
5.2 Thresholding and subtraction |
|
|
220 | (2) |
|
|
222 | (13) |
|
|
222 | (8) |
|
5.3.2 Fourier transform implementation |
|
|
230 | (4) |
|
5.3.3 Discussion of template matching |
|
|
234 | (1) |
|
5.4 Feature extraction by low-level features |
|
|
235 | (8) |
|
5.4.1 Appearance-based approaches |
|
|
235 | (3) |
|
5.4.2 Distribution-based descriptors |
|
|
238 | (5) |
|
|
243 | (45) |
|
|
243 | (1) |
|
|
243 | (7) |
|
|
250 | (5) |
|
|
255 | (3) |
|
5.5.5 Parameter space decomposition |
|
|
258 | (13) |
|
|
271 | (16) |
|
5.5.7 Other extensions to the HT |
|
|
287 | (1) |
|
|
288 | (1) |
|
|
289 | (4) |
|
Chapter 6 High-Level Feature Extraction: Deformable Shape Analysis |
|
|
293 | (50) |
|
|
293 | (1) |
|
6.2 Deformable shape analysis |
|
|
294 | (5) |
|
6.2.1 Deformable templates |
|
|
294 | (3) |
|
6.2.2 Parts-based shape analysis |
|
|
297 | (2) |
|
6.3 Active contours (snakes) |
|
|
299 | (26) |
|
|
299 | (2) |
|
6.3.2 The Greedy algorithm for snakes |
|
|
301 | (7) |
|
6.3.3 Complete (Kass) snake implementation |
|
|
308 | (5) |
|
6.3.4 Other snake approaches |
|
|
313 | (1) |
|
6.3.5 Further snake developments |
|
|
314 | (4) |
|
6.3.6 Geometric active contours (lcvel-set-based approaches) |
|
|
318 | (7) |
|
6.4 Shape skeletonization |
|
|
325 | (9) |
|
6.4.1 Distance transforms |
|
|
325 | (2) |
|
|
327 | (7) |
|
6.5 Flexible shape models-active shape and active appearance |
|
|
334 | (4) |
|
|
338 | (1) |
|
|
338 | (5) |
|
Chapter 7 Object Description |
|
|
343 | (56) |
|
|
343 | (2) |
|
7.2 Boundary descriptions |
|
|
345 | (33) |
|
7.2.1 Boundary and region |
|
|
345 | (1) |
|
|
346 | (3) |
|
7.2.3 Fourier descriptors |
|
|
349 | (29) |
|
|
378 | (17) |
|
7.3.1 Basic region descriptors |
|
|
378 | (5) |
|
|
383 | (12) |
|
|
395 | (1) |
|
|
395 | (4) |
|
Chapter 8 Introduction to Texture Description, Segmentation, and Classification |
|
|
399 | (36) |
|
|
399 | (1) |
|
|
400 | (3) |
|
|
403 | (14) |
|
8.3.1 Performance requirements |
|
|
403 | (1) |
|
8.3.2 Structural approaches |
|
|
403 | (3) |
|
8.3.3 Statistical approaches |
|
|
406 | (3) |
|
8.3.4 Combination approaches |
|
|
409 | (2) |
|
8.3.5 Local binary patterns |
|
|
411 | (6) |
|
|
417 | (1) |
|
|
417 | (12) |
|
|
417 | (7) |
|
8.4.2 The k-nearest neighbor rule |
|
|
424 | (4) |
|
8.4.3 Other classification approaches |
|
|
428 | (1) |
|
|
429 | (2) |
|
|
431 | (1) |
|
|
432 | (3) |
|
Chapter 9 Moving Object Detection and Description |
|
|
435 | (54) |
|
|
435 | (2) |
|
9.2 Moving object detection |
|
|
437 | (14) |
|
|
437 | (5) |
|
9.2.2 Modeling and adapting to the (static) background |
|
|
442 | (5) |
|
9.2.3 Background segmentation by thresholding |
|
|
447 | (3) |
|
9.2.4 Problems and advances |
|
|
450 | (1) |
|
9.3 Tracking moving features |
|
|
451 | (23) |
|
9.3.1 Tracking moving objects |
|
|
451 | (1) |
|
9.3.2 Tracking by local search |
|
|
452 | (3) |
|
9.3.3 Problems in tracking |
|
|
455 | (1) |
|
9.3.4 Approaches to tracking |
|
|
455 | (2) |
|
9.3.5 Meanshift and Camshift |
|
|
457 | (15) |
|
|
472 | (2) |
|
9.4 Moving feature extraction and description |
|
|
474 | (9) |
|
9.4.1 Moving (biological) shape analysis |
|
|
474 | (2) |
|
9.4.2 Detecting moving shapes by shape matching in image sequences |
|
|
476 | (4) |
|
9.4.3 Moving shape description |
|
|
480 | (3) |
|
|
483 | (1) |
|
|
484 | (5) |
|
Chapter 10 Appendix 1: Camera Geometry Fundamentals |
|
|
489 | (30) |
|
|
489 | (1) |
|
|
490 | (1) |
|
10.3 Perspective camera model |
|
|
491 | (9) |
|
10.3.1 Homogeneous coordinates and projective geometry |
|
|
491 | (5) |
|
10.3.2 Perspective camera model analysis |
|
|
496 | (3) |
|
10.3.3 Parameters of the perspective camera model |
|
|
499 | (1) |
|
|
500 | (5) |
|
10.4.1 Affine camera model |
|
|
501 | (2) |
|
10.4.2 Affine camera model and the perspective projection |
|
|
503 | (1) |
|
10.4.3 Parameters of the affine camera model |
|
|
504 | (1) |
|
10.5 Weak perspective model |
|
|
505 | (2) |
|
10.6 Example of camera models |
|
|
507 | (10) |
|
|
517 | (1) |
|
|
518 | (1) |
|
Chapter 11 Appendix 2: Least Squares Analysis |
|
|
519 | (6) |
|
11.1 The least squares criterion |
|
|
519 | (2) |
|
11.2 Curve fitting by least squares |
|
|
521 | (4) |
|
Chapter 12 Appendix 3: Principal Components Analysis |
|
|
525 | (16) |
|
12.1 Principal components analysis |
|
|
525 | (1) |
|
|
526 | (1) |
|
|
526 | (3) |
|
|
529 | (1) |
|
|
530 | (1) |
|
12.6 Inverse transformation |
|
|
531 | (1) |
|
|
532 | (1) |
|
12.8 Solving the eigenproblem |
|
|
533 | (1) |
|
|
533 | (1) |
|
|
534 | (6) |
|
|
540 | (1) |
|
Chapter 13 Appendix 4: Color Images |
|
|
541 | (60) |
|
|
542 | (1) |
|
|
542 | (2) |
|
|
544 | (56) |
|
13.3.1 The colorimetric equation |
|
|
544 | (1) |
|
13.3.2 Luminosity function |
|
|
545 | (2) |
|
13.3.3 Perception based color models: the CIE RGB and CIE XYZ |
|
|
547 | (15) |
|
13.3.4 Uniform color spaces: CIE LUV and CIE Lab |
|
|
562 | (6) |
|
13.3.5 Additive and subtractive color models: RGB and CMY |
|
|
568 | (7) |
|
13.3.6 Luminance and chrominance color models: YUV, YIQ, and YCbCr |
|
|
575 | (8) |
|
13.3.7 Perceptual color models: HSV and HLS |
|
|
583 | (16) |
|
|
599 | (1) |
|
|
600 | (1) |
Index |
|
601 | |