Muutke küpsiste eelistusi

E-raamat: Feature Extraction and Image Processing

, (University of Southampton)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 22-Oct-2013
  • Kirjastus: Newnes (an imprint of Butterworth-Heinemann Ltd )
  • Keel: eng
  • ISBN-13: 9780080506258
  • Formaat - PDF+DRM
  • Hind: 46,92 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 22-Oct-2013
  • Kirjastus: Newnes (an imprint of Butterworth-Heinemann Ltd )
  • Keel: eng
  • ISBN-13: 9780080506258

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Focusing on feature extraction while also covering issues and techniques such as image acquisition, sampling theory, point operations and low-level feature extraction, the authors have a clear and coherent approach that will appeal to a wide range of students and professionals. This is an ideal module text for courses in artificial intelligence, image processing and computer vision. It is an essential reading for engineers and academics working in this cutting-edge field. It is supported by free software on a companion website.

Muu info

*Ideal module text for courses in artificial intelligence, image processing and computer vision *Essential reading for engineers and academics working in this cutting-edge field *Supported by free software on a companion website
Preface ix
Introduction
1(30)
Overview
1(1)
Human and computer vision
1(2)
The human vision system
3(7)
The eye
4(3)
The neural system
7(1)
Processing
8(2)
Computer vision systems
10(5)
Cameras
10(3)
Computer interfaces
13(1)
Processing an image
14(1)
Mathematical systems
15(9)
Mathematical tools
15(1)
Hello Mathcad, hello images!
16(5)
Hello Matlab!
21(3)
Associated literature
24(4)
Journal and magazines
24(1)
Textbooks
25(2)
The web
27(1)
References
28(3)
Images, sampling and frequency domain processing
31(36)
Overview
31(1)
Image formation
31(4)
The Fourier transform
35(5)
The sampling criterion
40(5)
The discrete Fourier transform (DFT)
45(8)
One-dimensional transform
45(2)
Two-dimensional transform
47(6)
Other properties of the Fourier transform
53(4)
Shift invariance
53(1)
Rotation
54(1)
Frequency scaling
55(1)
Superposition (linearity)
56(1)
Transforms other than Fourier
57(6)
Discrete cosine transform
57(1)
Discrete Hartley transform
58(2)
Introductory wavelets; the Gabor wavelet
60(2)
Other transforms
62(1)
Applications using frequency domain properties
63(2)
Further reading
65(1)
References
65(2)
Basic image processing operations
67(32)
Overview
67(1)
Histograms
67(2)
Point operators
69(10)
Basic point operations
69(3)
Histogram normalisation
72(1)
Histogram equalisation
72(4)
Thresholding
76(3)
Group operations
79(9)
Template convolution
79(3)
Averaging operator
82(3)
On different template size
85(1)
Gaussian averaging operator
86(2)
Other statistical operators
88(7)
More on averaging
88(1)
Median filter
89(3)
Mode filter
92(3)
Comparison of statistical operators
95(1)
Further reading
95(1)
References
96(3)
Low-Level feature extraction (including edge detection)
99(62)
Overview
99(1)
First-order edge detection operators
99(21)
Basic operators
99(4)
Analysis of the basic operators
103(2)
Prewitt edge detection operator
105(1)
Sobel edge detection operator
106(6)
The Canny edge detector
112(8)
Second-order edge detection operators
120(7)
Motivation
120(1)
Basic operators: the Laplacian
121(2)
The Marr--Hildreth operator
123(4)
Other edge detection operators
127(2)
Spacek operator
127(1)
Petrou operator
128(1)
Comparison of edge detection operators
129(1)
Detecting image curvature
130(15)
Computing differences in edge direction
132(2)
Approximation to a continuous curve
134(4)
Measuring curvature by changes in intensity
138(2)
Autocorrelation as a measure of curvature
140(5)
Describing image motion
145(11)
Area-based approach
146(3)
Differential approach
149(7)
Further reading
156(1)
References
157(4)
Feature extraction by shape matching
161(56)
Overview
161(1)
Thresholding and subtraction
162(2)
Template matching
164(9)
Definition
164(6)
Fourier transform implementation
170(3)
Discussion of template matching
173(1)
Hough transform (HT)
173(26)
Overview
173(1)
Lines
174(5)
HT for circles
179(5)
HT for ellipses
184(2)
Parameter space decomposition
186(13)
Generalised Hough transform (GHT)
199(14)
Formal definition of the GHT
199(2)
Polar definition
201(1)
The GHT technique
202(4)
Invariant GHT
206(7)
Other extensions to the HT
213(1)
Further reading
214(1)
References
214(3)
Flexible shape extraction (snakes and other techniques)
217(30)
Overview
217(1)
Deformable templates
218(2)
Active contours (snakes)
220(16)
Basics
220(2)
The greedy algorithm for snakes
222(5)
Complete (Kass) snake implementation
227(5)
Other snake approaches
232(1)
Further snake developments
233(3)
Discrete symmetry operator
236(4)
Flexible shape models
240(3)
Further reading
243(1)
References
243(4)
Object description
247(44)
Overview
247(1)
Boundary descriptions
248(30)
Boundary and region
248(1)
Chain codes
249(2)
Fourier descriptors
251(27)
Region descriptors
278(10)
Basic region descriptors
278(2)
Moments
280(8)
Further reading
288(1)
References
288(3)
Introduction to texture description, segmentation and classification
291(20)
Overview
291(1)
What is texture
292(2)
Texture description
294(7)
Performance requirements
294(1)
Structural approaches
294(3)
Statistical approaches
297(2)
Combination approaches
299(2)
Classification
301(5)
The k-nearest neighbour rule
301(4)
Other classification approaches
305(1)
Segmentation
306(1)
Further reading
307(1)
References
308(3)
Appendices
311(34)
Appendix 1: Homogeneous co-ordinate system
311(3)
References
313(1)
Appendix 2: Least squares analysis
314(3)
The least squares criterion
314(1)
Curve fitting by least squares
315(2)
Appendix 3: Example Mathcad worksheet for
Chapter 3
317(19)
Appendix 4: Abbreviated Matlab worksheet
336(9)
Index 345