Muutke küpsiste eelistusi

E-raamat: FEM and Micromechatronics with ATILA Software

(The Pennsylvania State University, University Park, USA)
  • Formaat: 358 pages
  • Ilmumisaeg: 03-Oct-2018
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781420058796
  • Formaat - PDF+DRM
  • Hind: 100,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 358 pages
  • Ilmumisaeg: 03-Oct-2018
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781420058796

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Students preparing to work with mechatronics, particularly with highly precise and smart actuators, face the challenge of designing and analyzing devices without formal and practical guidance in computer techniques. Finally there is a textbook that is as practical as it is authoritative: Kenji Uchino's FEM and Micromechatronics with ATILA Software.

Ideal for Today's Computer-Based Curricula Every aspect of this book reflects its focus on being easy to use, easy to teach from, and above all, easy to implement. The first half of the text outlines the theory needed to develop and design smart actuators and transducers, while the second half walks students step-by-step through the software implementation using seven extensive examples. Even the book's lay-flat binding makes it easy for students to follow the text while working simultaneously at a computer. The downloadable resources supply a free educational version of ATILA-Light.

Unified Coverage for Integrated Technologies Covering the myriad challenges posed by smart transducers, the author introduces the fundamentals of piezoelectric and magnetostrictive devices, practical materials, device designs, drive and control techniques, and typical applications. Numerous problems and examples give students ample opportunity to put the concepts into practice.

Outlining a complete treatment in 30 convenient 75 minute lessons, FEM and Micromechatronics with ATILA Software is a unique classroom text that students will continue to use throughout their entire careers.
About the Author v
Preface vii
List of Symbols
xiii
Suggested Teaching Schedule xv
Prerequisite Knowledge xvii
PAER I Fundamentals
1(128)
Micromechatronic Trends and Computer Simulation
3(10)
The Need for New Actuators
3(1)
An Overview Of solid-State Actuators
4(2)
Smart Actuators
4(2)
New Actuators
6(1)
Necessity of Computer Simulation
6(5)
Deformable Mirror
7(1)
π-Shaped Ultrasonic Motor
8(1)
Analytical Approach
9(1)
FEM Approach
10(1)
Purpose And Contents Of This Textbook
11(2)
References
11(2)
Review of Piezoelectricity and Magnetostriction
13(28)
Plezoelectric Materlals: AN Overview
13(6)
Piezoelectric Figures of Merit
13(1)
Piezoelectric Strain Constant d
13(1)
Piezoelectric Voltage Constant g
13(1)
Electromechanicl Coupling Factor K
13(2)
Mechanical Quality Factor Q
15(1)
Acoustuc Impedance Z
16(1)
Piezoelectric materials
17(1)
Polycrystalline Materials
17(1)
Relaxor Ferroelectrics
18(1)
Composites
18(1)
Thin Films
19(1)
Magnetostrictive Materials
19(2)
Mathematical Treatment
21(9)
Tensor Representation
21(1)
Crystal symmetry and Tensor Form
21(1)
Matrix Notation
22(5)
Hysteresis and Loss in Piezoelectrics
27(1)
Dielectric Loss and Hysteresis
27(1)
General Considerations
28(2)
Applications Of Smart Transducers
30(11)
Ultrasonic Transducers
30(1)
Audible Sound
30(1)
Sound Channel
30(2)
Medical Ultrasonic Imaging
32(1)
Piezoelectric Transformers
33(1)
Piezoelectric Actuators
33(1)
Servo Displacement Transducers
34(1)
Pulse Drive Motors
35(3)
Ultrasonic Motors
38(1)
References
39(2)
Structures of Smart Transducers
41(26)
Design Classification
41(1)
Multilayers
41(7)
Unimorph/Bimorph
48(4)
Moonie/Cymbal
52(1)
Displacement Amplification Mechanisms
53(1)
Ultrasonic Motor
54(6)
Classification of Ultrasonic Motors
54(1)
Standing Wave Motors
55(3)
Traveling Wave Motors
58(2)
Underwater Transducer
60(7)
Langevin Transducer
60(1)
Acoustic Lens and Horn
61(2)
Acoustic Impedance Matching
63(2)
References
65(2)
Drive/Control Techniques of Smart Transducers
67(20)
Classification of Plezoelectric Actuators
67(1)
Pulse Drive
67(10)
The Piezoelectric Equations
68(1)
The Longitudinal Vibration Modes
69(1)
The Longitudinal Vibration Mode Based on the Transverse Piezoelectric Effect
69(2)
The Longitudinal Vibration Mode Based on the Longitudinal Piezoelectric Effect
71(1)
Consideration of the Loss
71(1)
Solution for Longitudingl Vibration k31 Mode
72(4)
Experimental Observations of Transient Vibrations
76(1)
Consideration of the Loss
76(1)
Resonance Drive
77(5)
The Electromechanical Coupling Factor
77(1)
Piezoelectic Resonance
78(1)
Electrical Impedance
79(1)
Strain Distribution in the Sample
80(1)
Equivalent Circuits for Piezoelectric Vibrators
81(1)
Plezoelectric Damper
82(5)
References
85(2)
Finite Element analysis for Smart Transducers
87(20)
Fundamentals Of Finite Element Analysis
87(1)
Defining The Equations for The Problem
87(3)
The Constitutive and Equilibrium Equations
87(1)
Boundary Conditions
88(1)
The Variational Principle
89(1)
Application Of The Finite Element Method
90(8)
Discretization of the Domain
90(1)
Shape Functions
90(3)
Parent Elements
93(2)
Discretization of the Variational Form
95(2)
Assembly
97(1)
Computation
98(1)
Fem Simulation Examples
98(9)
Multiiayer Actuator
99(1)
II-Type Linear Ultrasonic Motor
99(1)
Windmill Ultrasonic Motor
99(2)
Metal Tube Ultrasonic Motor
101(1)
Piezoelectric Transformer
101(3)
Cymbal Underwater Transducer
104(1)
References
105(2)
Desing Optimization with FEM
107(14)
Optimization Of the Metal Tube Motor
107(3)
Circular Cross Section
107(2)
Square Cross Section
109(1)
Genetic Optimization
110(8)
Genetic Algorithm
110(2)
Application Example: Mixed-Mode Ultrasonic Motor (MMUM)
112(4)
Comparison with Experiments
116(2)
Cymbal Array
118(3)
References
120(1)
Future of FEM in Smart structures
121(8)
Nonlinear/Hysteresis Characteristics
121(1)
Elastic Nonlinearity
121(1)
Loss Anisotropy
121(1)
Heat Generation
121(4)
Hysteresis Estimation Program
125(4)
References
128(1)
PART II HOW TO USE ATILA
129(180)
Preparation
131(10)
General Simulation Process/Learn GiD
134(1)
Animation, Admittance Curve, and Report Format
135(2)
How to use the attached GiD file in this CD
137(4)
Piezoelectric Plate
141(32)
Rectangular Plate
142(14)
Circular Disk
156(17)
Magnetostrictive Rod
173(10)
Magnetostrictive Rod
174(9)
Composite Structure
183(36)
Bimorph
184(13)
Unimorph
197(6)
Multilayer
203(6)
Cymbal
209(10)
Piezoelectric Transformer
219(26)
Rosen-Tupe Transformer
220(16)
Ring-Dot-Type Transformer
236(9)
Ultrasonic Motor
245(22)
L-Shaped USM
246(6)
II-Shaped USM
252(7)
Metal-Tube USM
259(8)
Underwater Transducer
267(34)
Langevin-Type Transducer
268(6)
Underwater Cymbal
274(8)
Tonpilz Sonar
282(19)
Acoustic Lens
301(8)
Appendix: Homework 309(15)
References 324(1)
Index 325
Kenji Uchino (Author)