Muutke küpsiste eelistusi

E-raamat: Fiber-Optic Communication Systems

(The Institute of Optics, University of Rochester)
  • Formaat - EPUB+DRM
  • Hind: 161,72 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"This book provides a comprehensive account of fiber-optic communication systems. The 3rd edition of this book is used worldwide as a textbook in many universities. This 4th edition incorporates recent advances that have occurred, in particular two new chapters. One deals with the advanced modulation formats (such as DPSK, QPSK, and QAM) that are increasingly being used for improving spectral efficiency of WDM lightwave systems. The second chapter focuses on new techniques such as all-optical regeneration that are under development and likely to be used in future communication systems. All other chapters are updated, as well."--

"This book provides a comprehensive account of fiber-optic communication systems. The 3rd edition of this book is used worldwide as a textbook in many universities. This 4th edition incorporates recent advances that have occurred, in particular two new chapters. One deals with the advanced modulation formats (such as DPSK, QPSK, and QAM) that are increasingly being used for improving spectral efficiency of WDM lightwave systems. The second chapter focuses on new techniques such as all-optical regeneration that are under development and likely to be used in future communication systems. All other chapters are updated, as well."--Provided by publisher.

This book provides a comprehensive account of fiber-optic communication systems. The 3rd edition of this book is used worldwide as a textbook in many universities. This 4th edition incorporates recent advances that have occurred, in particular two new chapters. One deals with the advanced modulation formats (such as DPSK, QPSK, and QAM) that are increasingly being used for improving spectral efficiency of WDM lightwave systems. The second chapter focuses on new techniques such as all-optical regeneration that are under development and likely to be used in future communication systems. All other chapters are updated, as well.

Arvustused

"Despite the otherwise excellent quality of the book, there are also several typos, in the text as well as in the problems." (Optics and Photonics News, 13 May 2011)

Preface xv
1 Introduction 1(23)
1.1 Historical Perspective
1(7)
1.1.1 Need for Fiber-Optic Communications
2(2)
1.1.2 Evolution of Lightwave Systems
4(4)
1.2 Basic Concepts
8(8)
1.2.1 Analog and Digital Signals
8(3)
1.2.2 Channel Multiplexing
11(2)
1.2.3 Modulation Formats
13(3)
1.3 Optical Communication Systems
16(1)
1.4 Lightwave System Components
17(3)
1.4.1 Optical Fibers as a Communication Channel
18(1)
1.4.2 Optical Transmitters
18(1)
1.4.3 Optical Receivers
19(1)
Problems
20(1)
References
21(3)
2 Optical Fibers 24(55)
2.1 Geometrical-Optics Description
24(5)
2.1.1 Step-Index Fibers
25(2)
2.1.2 Graded-Index Fibers
27(2)
2.2 Wave Propagation
29(9)
2.2.1 Maxwell's Equations
29(2)
2.2.2 Fiber Modes
31(3)
2.2.3 Single-Mode Fibers
34(4)
2.3 Dispersion in Single-Mode Fibers
38(8)
2.3.1 Group-Velocity Dispersion
39(1)
2.3.2 Material Dispersion
40(1)
2.3.3 Waveguide Dispersion
41(2)
2.3.4 Higher-Order Dispersion
43(1)
2.3.5 Polarization-Mode Dispersion
44(2)
2.4 Dispersion-Induced Limitations
46(9)
2.4.1 Basic Propagation Equation
46(1)
2.4.2 Chirped Gaussian Pulses
47(3)
2.4.3 Limitations on the Bit Rate
50(4)
2.4.4 Fiber Bandwidth
54(1)
2.5 Fiber Losses
55(4)
2.5.1 Attenuation Coefficient
55(2)
2.5.2 Material Absorption
57(1)
2.5.3 Rayleigh Scattering
58(1)
2.5.4 Waveguide Imperfections
58(1)
2.6 Nonlinear Optical Effects
59(8)
2.6.1 Stimulated Light Scattering
59(5)
2.6.2 Nonlinear Phase Modulation
64(3)
2.6.3 Four-Wave Mixing
67(1)
2.7 Fiber Design and Fabrication
67(7)
2.7.1 Silica Fibers
68(3)
2.7.2 Plastic Optical Fibers
71(1)
2.7.3 Cables and Connectors
72(2)
Problems
74(1)
References
75(4)
3 Optical Transmitters 79(49)
3.1 Semiconductor Laser Physics
79(8)
3.1.1 Spontaneous and Stimulated Emissions
80(1)
3.1.2 Nonradiative Recombination
81(1)
3.1.3 Optical Gain
82(2)
3.1.4 Feedback and Laser Threshold
84(1)
3.1.5 Longitudinal Modes
85(1)
3.1.6 Laser Structures
86(1)
3.2 Single-Mode Semiconductor Lasers
87(7)
3.2.1 Distributed Feedback Lasers
88(2)
3.2.2 Coupled-Cavity Semiconductor Lasers
90(1)
3.2.3 Tunable Semiconductor Lasers
91(2)
3.2.4 Vertical-Cavity Surface-Emitting Lasers
93(1)
3.3 Laser Characteristics
94(10)
3.3.1 CW Characteristics
95(3)
3.3.2 Modulation Bandwidth
98(2)
3.3.3 Relative Intensity Noise
100(2)
3.3.4 Spectral Linewidth
102(2)
3.4 Optical Signal Generation
104(6)
3.4.1 Direct Modulation
104(2)
3.4.2 External Modulation
106(4)
3.5 Light-Emitting Diodes
110(5)
3.5.1 CW Characteristics
110(2)
3.5.2 Modulation Response
112(1)
3.5.3 LED Structures
113(2)
3.6 Transmitter Design
115(6)
3.6.1 Source–Fiber Coupling
115(3)
3.6.2 Driving Circuitry
118(1)
3.6.3 Reliability and Packaging
119(2)
Problems
121(1)
References
122(6)
4 Optical Receivers 128(54)
4.1 Basic Concepts
128(3)
4.1.1 Responsivity and Quantum Efficiency
128(2)
4.1.2 Rise Time and Bandwidth
130(1)
4.2 Common Photodetectors
131(13)
4.2.1 p–n Photodiodes
132(1)
4.2.2 p–i–n Photodiodes
133(4)
4.2.3 Avalanche Photodiodes
137(6)
4.2.4 MSM Photodetectors
143(1)
4.3 Receiver Design
144(7)
4.3.1 Front End
144(1)
4.3.2 Linear Channel
145(2)
4.3.3 Decision Circuit
147(1)
4.3.4 Integrated Receivers
148(3)
4.4 Receiver Noise
151(7)
4.4.1 Noise Mechanisms
151(2)
4.4.2 p–i–n Receivers
153(1)
4.4.3 APD Receivers
154(4)
4.5 Coherent Detection
158(3)
4.5.1 Local Oscillator
158(1)
4.5.2 Homodyne Detection
159(1)
4.5.3 Heterodyne Detection
160(1)
4.5.4 Signal-to-Noise Ratio
160(1)
4.6 Receiver Sensitivity
161(6)
4.6.1 Bit-Error Rate
162(2)
4.6.2 Minimum Received Power
164(2)
4.6.3 Quantum Limit of Photodetection
166(1)
4.7 Sensitivity Degradation
167(6)
4.7.1 Extinction Ratio
167(2)
4.7.2 Intensity Noise
169(2)
4.7.3 Timing Jitter
171(2)
4.8 Receiver Performance
173(2)
Problems
175(2)
References
177(5)
5 Lightwave Systems 182(41)
5.1 System Architectures
182(5)
5.1.1 Point-to-Point Links
182(2)
5.1.2 Distribution Networks
184(1)
5.1.3 Local-Area Networks
185(2)
5.2 Design Guidelines
187(7)
5.2.1 Loss-Limited Lightwave Systems
187(2)
5.2.2 Dispersion-Limited Lightwave Systems
189(1)
5.2.3 Power Budget
190(1)
5.2.4 Rise-Time Budget
191(3)
5.3 Long-Haul Systems
194(6)
5.3.1 Performance-Limiting Factors
194(2)
5.3.2 Terrestrial Lightwave Systems
196(2)
5.3.3 Undersea Lightwave Systems
198(2)
5.4 Sources of Power Penalty
200(12)
5.4.1 Modal Noise
201(1)
5.4.2 Mode-Partition Noise
202(2)
5.4.3 Reflection Feedback and Noise
204(4)
5.4.4 Dispersive Pulse Broadening
208(1)
5.4.5 Frequency Chirping
209(1)
5.4.6 Eye-Closure Penalty
210(2)
5.5 Forward Error Correction
212(2)
5.5.1 Error-Correcting Codes
212(1)
5.5.2 Coding Gain
213(1)
5.6 Computer-Aided Design
214(2)
Problems
216(2)
References
218(5)
6 Multichannel Systems 223(72)
6.1 WDM Lightwave Systems
223(9)
6.1.1 High-Capacity Point-to-Point Links
224(4)
6.1.2 Wide-Area and Metro-Area Networks
228(2)
6.1.3 Multiple-Access WDM Networks
230(2)
6.2 WDM Components
232(19)
6.2.1 Tunable Optical Filters
233(5)
6.2.2 Multiplexers and Demultiplexers
238(4)
6.2.3 Add–Drop Multiplexers and Filters
242(2)
6.2.4 Star Couplers
244(2)
6.2.5 Wavelength Routers
246(2)
6.2.6 WDM Transmitters and Receivers
248(3)
6.3 System Performance Issues
251(13)
6.3.1 Heterowavelength Linear Crosstalk
251(2)
6.3.2 Homowavelength Linear Crosstalk
253(2)
6.3.3 Nonlinear Raman Crosstalk
255(2)
6.3.4 Stimulated Brillouin Scattering
257(2)
6.3.5 Cross-Phase Modulation
259(2)
6.3.6 Four-Wave Mixing
261(1)
6.3.7 Other Design Issues
262(2)
6.4 Time-Division Multiplexing
264(5)
6.4.1 Channel Multiplexing
264(2)
6.4.2 Channel Demultiplexing
266(2)
6.4.3 System Performance
268(1)
6.5 Subcarrier Multiplexing
269(8)
6.5.1 Analog and Digital SCM Systems
270(3)
6.5.2 Multiwavelength SCM Systems
273(2)
6.5.3 Orthogonal Frequency-Division multiplexing
275(2)
6.6 Code-Division Multiplexing
277(6)
6.6.1 Time-Domain Encoding
278(2)
6.6.2 Frequency-Domain Encoding
280(1)
6.6.3 Frequency Hopping
281(2)
Problems
283(2)
References
285(10)
7 Loss Management 295(50)
7.1 Compensation of Fiber Losses
295(5)
7.1.1 Periodic Amplification Scheme
296(2)
7.1.2 Lumped Versus Distributed Amplification
298(1)
7.1.3 Bidirectional Pumping Scheme
299(1)
7.2 Erbium-Doped Fiber Amplifiers
300(10)
7.2.1 Pumping and Gain Spectrum
300(2)
7.2.2 Two-Level Model
302(3)
7.2.3 Amplifier Noise
305(2)
7.2.4 Multichannel Amplification
307(3)
7.3 Raman Amplifiers
310(8)
7.3.1 Raman Gain and Bandwidth
310(2)
7.3.2 Raman-Induced Signal Gain
312(1)
7.3.3 Multiple-Pump Raman Amplification
313(3)
7.3.4 Noise Figure of Raman Amplifiers
316(2)
7.4 Optical Signal-To-Noise Ratio
318(3)
7.4.1 Lumped Amplification
318(1)
7.4.2 Distributed Amplification
319(2)
7.5 Electrical Signal-To-Noise Ratio
321(4)
7.5.1 ASE-Induced Current Fluctuations
321(1)
7.5.2 Impact of ASE on SNR
322(1)
7.5.3 Noise Buildup in an Amplifier Chain
323(2)
7.6 Receiver Sensitivity and Q Factor
325(3)
7.6.1 Bit-Error Rate
325(2)
7.6.2 Relation between Q Factor and Optical SNR
327(1)
7.7 Role of Dispersive and Nonlinear Effects
328(6)
7.7.1 Noise Growth through Modulation Instability
328(2)
7.7.2 Noise-Induced Signal Degradation
330(2)
7.7.3 Noise-Induced Energy Fluctuations
332(1)
7.7.4 Noise-Induced Timing Jitter
333(1)
7.8 Periodically Amplified Lightwave Systems
334(5)
7.8.1 Numerical Approach
335(2)
7.8.2 Optimum Launched Power
337(2)
Problems
339(1)
References
340(5)
8 Dispersion Management 345(62)
8.1 Dispersion Problem and Its Solution
345(2)
8.2 Dispersion-Compensating Fibers
347(7)
8.2.1 Conditions for Dispersion Compensation
348(1)
8.2.2 Dispersion Maps
349(1)
8.2.3 DCF Designs
350(4)
8.3 Fiber Bragg Gratings
354(9)
8.3.1 Constant-Period Gratings
354(2)
8.3.2 Chirped Fiber Gratings
356(4)
8.3.3 Sampled Gratings
360(3)
8.4 Dispersion-Equalizing Filters
363(6)
8.4.1 Gires–Tournois Filters
363(3)
8.4.2 Mach–Zehnder Filters
366(1)
8.4.3 Other All-Pass Filters
367(2)
8.5 Optical Phase Conjugation
369(6)
8.5.1 Principle of Operation
369(1)
8.5.2 Compensation of Self-Phase Modulation
370(1)
8.5.3 Generation of Phase-Conjugated Signal
371(4)
8.6 Channels at High Bit Rates
375(10)
8.6.1 Tunable Dispersion Compensation
375(4)
8.6.2 Higher-Order Dispersion Management
379(3)
8.6.3 PMD Compensation
382(3)
8.7 Electronic Dispersion Compensation
385(12)
8.7.1 Basic Idea behind GVD Precompensation
385(1)
8.7.2 Precompensation at the Transmitter
386(6)
8.7.3 Dispersion Compensation at the Receiver
392(5)
Problems
397(2)
References
399(8)
9 Control of Nonlinear Effects 407(52)
9.1 Impact of Fiber Nonlinearity
407(9)
9.1.1 System Design Issues
408(3)
9.1.2 Semianalytic Approach
411(3)
9.1.3 Soliton and Pseudo-linear Regimes
414(2)
9.2 Solitons in Optical Fibers
416(7)
9.2.1 Properties of Optical Solitons
416(3)
9.2.2 Loss-Managed Solitons
419(4)
9.3 Dispersion-Managed Solitons
423(11)
9.3.1 Dispersion-Decreasing Fibers
423(1)
9.3.2 Periodic Dispersion Maps
424(3)
9.3.3 Design Issues
427(3)
9.3.4 Timing Jitter
430(2)
9.3.5 Control of Timing Jitter
432(2)
9.4 Pseudo-linear Lightwave Systems
434(10)
9.4.1 Origin of Intrachannel Nonlinear Effects
435(2)
9.4.2 Intrachannel Cross-Phase Modulation
437(4)
9.4.3 Intrachannel Four-Wave Mixing
441(3)
9.5 Control of Intrachannel Nonlinear Effects
444(7)
9.5.1 Optimization of Dispersion Maps
444(4)
9.5.2 Phase-Alternation Techniques
448(1)
9.5.3 Polarization Bit Interleaving
449(2)
Problems
451(2)
References
453(6)
10 Advanced Lightwave Systems 459(52)
10.1 Advanced Modulation Formats
460(4)
10.1.1 Encoding of Optical Signals
460(2)
10.1.2 Amplitude and Phase Modulators
462(2)
10.2 Demodulation Schemes
464(6)
10.2.1 Synchronous Heterodyne Demodulation
464(2)
10.2.2 Asynchronous Heterodyne Demodulation
466(1)
10.2.3 Optical Delay Demodulation
467(3)
10.3 Shot Noise and Bit-Error Rate
470(6)
10.3.1 Synchronous Heterodyne Receivers
470(2)
10.3.2 Asynchronous Heterodyne Receivers
472(3)
10.3.3 Receivers with Delay Demodulation
475(1)
10.4 Sensitivity Degradation Mechanisms
476(9)
10.4.1 Intensity Noise of Lasers
476(2)
10.4.2 Phase Noise of Lasers
478(2)
10.4.3 Signal Polarization Fluctuations
480(3)
10.4.4 Noise Added by Optical Amplifiers
483(1)
10.4.5 Fiber Dispersion
484(1)
10.5 Impact of Nonlinear Effects
485(9)
10.5.1 Nonlinear Phase Noise
486(3)
10.5.2 Effect of Fiber Dispersion
489(1)
10.5.3 Compensation of Nonlinear Phase Noise
490(4)
10.6 Recent Progress
494(7)
10.6.1 Systems with the DBPSK format
494(2)
10.6.2 Systems with the DQPSK format
496(1)
10.6.3 QAM and Related formats
497(2)
10.6.4 Systems Employing Orthogonal FDM
499(2)
10.7 Ultimate Channel Capacity
501(2)
Problems
503(1)
References
504(7)
11 Optical Signal Processing 511(67)
11.1 Nonlinear Techniques and Devices
511(18)
11.1.1 Nonlinear Optical Loop Mirrors
512(4)
11.1.2 Parametric Amplifiers
516(6)
11.1.3 Nonlinear Effects in Semiconductor Optical Amplifiers
522(4)
11.1.4 Bistable Optical Devices
526(3)
11.2 All-Optical Flip–Flops
529(4)
11.2.1 Semiconductor Lasers and SOAs
529(2)
11.2.2 Coupled Semiconductor Lasers and SOAs
531(2)
11.3 Wavelength Converters
533(11)
11.3.1 XPM-Based Wavelength Converters
533(4)
11.3.2 FWM-Based Wavelength Converters
537(3)
11.3.3 Passive Semiconductor Waveguides
540(2)
11.3.4 SOA-Based Wavelength Converters
542(2)
11.4 Ultrafast Optical Switching
544(9)
11.4.1 Time-Domain Demultiplexing
545(4)
11.4.2 Data-Format Conversion
549(3)
11.4.3 Packet Switching
552(1)
11.5 Optical Regenerators
553(15)
11.5.1 Fiber-Based 2R Regenerators
553(6)
11.5.2 SOA-Based 2R Regenerators
559(1)
11.5.3 Fiber-Based 3R Regenerators
560(2)
11.5.4 SOA-Based 3R Regenerators
562(3)
11.5.5 Regeneration of Phase-Encoded Signals
565(3)
Problems
568(1)
References
569(9)
A System of Units 578(2)
B Acronyms 580(4)
C General Formula for Pulse Broadening 584(3)
D Software Package 587(2)
Index 589
GOVIND P. AGRAWAL is a professor at the Institute of Optics at the University of Rochester and a Fellow of both the Optical Society of America and the Institute of Electrical and Electronics Engineering. He is also a Senior Scientist at the Laboratory for Laser Energetics. Dr. Agrawal is author or coauthor of more than 300 research papers, book chapters, and monographs.