Muutke küpsiste eelistusi

E-raamat: Fiber-Optic Fabry-Perot Sensors: An Introduction

(University of Electronic Science and Technology of China, Chengdu, Sichuan), (University of Electronic Science and Technology of China, Chengdu, Sichuan), (University of Electronic Science and Technology of China, Chengdu, Sichuan)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 64,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The authors deliver a complete overview of fiber-optic Fabry-Perot (FFP) sensing technology, integrating the knowledge and tools of multiple fields including optics, sensing, micromachining, instrumentation, physics, and materials science. The main chapters discuss operating principles, microstructures, fabrication methods, signal demodulation, and instrumentation. This treatment spans the full range of structures (intrinsic/extrinsic, multimode fiber vs single-mode fibers), as well as advanced micromachining technologies and major interrogating and multiplexing methods for the formation of multi-point, quasi-distributed sensing networks. Readers will also gain a summary of state-of-the-art applications in oil, gas, and electricity industries, aerospace technology, and biomedicine.

Yun-Jiang Rao is Dean of the School of Communication & Information Engineering, and Director of the Key Lab of Optical Fiber Sensing & Communications at the University of Electronic Science and Technology of China. Zeng-Ling Ran and Yuan Gong are both associate professors at the Optical Fiber Technology Research Laboratory of the University of Electronic Science and Technology of China.

Arvustused

"This book strikes a good balance between fundamental materials science and technology developments with diverse topics ranging from epitaxial growth of high-aluminum and high-indium composition III-nitride thin-film and nanostructural materials to development of native GaN substrates, from fundamental understandings of electronic and optical properties to processing techniques which are of central important to improve device performance, and from continued push to new emitter wavelengths to new frontiers in solar cells, intersubband (ISB) optoelectronics, lighting communications, and quantum light emitters. I believe this book will be a great resource to researchers and engineers, both in academia and industry, to learn and be inspired by the latest developments and potentials of III-nitride materials and devices." Shuji Nakamura, 2014 Nobel Laureate in Physics and Professor of Materials, University of California Santa Barbara

Series Preface ix
Preface xiii
Authors xvii
Chapter 1 Principles
1(18)
1.1 Physics of Fabry--Perot Cavities
1(3)
1.2 Principles of Fiber-Optic Fabry--Perot Interferometric (FFPI) Sensors
4(15)
1.2.1 Two-Beam Interference
4(3)
1.2.2 Three-Beam Interference
7(5)
1.2.3 Multi-Beam Interference
12(6)
References
18(1)
Chapter 2 Microstructures of FFPI Sensors
19(44)
2.1 Singlemode FFPI Structures
20(23)
2.1.1 Intrinsic FFPI Sensors
20(1)
2.1.1.1 IFFPI Structures Based on FBG Pairs
20(3)
2.1.1.2 IFFPI Structures Based on Reflective Films
23(2)
2.1.1.3 IFFPI Structures Based on Air Holes
25(3)
2.1.1.4 IFFPI Structures Based on Fusion Splicing of Different Kinds of Fibers
28(3)
2.1.1.5 Asymmetric IFFPI Structures
31(1)
2.1.2 Extrinsic FFPI Sensors
32(1)
2.1.2.1 Capillary-Aligned EFFPI
33(1)
2.1.2.2 EFFPI Based on Fiber End and Diaphragm
34(1)
2.1.2.3 EFFPI Based on Microfabrication Technologies
35(4)
2.1.2.4 EFFPI Based on Capillary or Hollow Fiber
39(1)
2.1.2.5 EFFPI Based on Bubble
39(1)
2.1.2.6 EFFPI Based on Reflective Film
40(2)
2.1.2.7 EFFPI Based on Sensitive Film
42(1)
2.2 Multimode FFPI Sensors
43(2)
2.3 Hybrid FFPI Sensors
45(3)
2.3.1 Intrinsic--Extrinsic Hybrid FFPIs
46(2)
2.3.2 Hybrid FFPI with Other Fiber-Optic Structures
48(1)
2.4 Microstructured FFPI Sensors
48(15)
2.4.1 Photonic Crystal Fiber FFPIs
48(3)
2.4.2 Microstructured Optical Fiber FFPIs
51(3)
2.4.3 Microfiber or Tapered FFPIs
54(1)
References
55(8)
Chapter 3 Fabrication Techniques for FFPI Sensors
63(38)
3.1 Femtosecond Laser Micromachining
63(10)
3.1.1 Open Notch FFP Sensor Fabricated by Femtosecond Laser
63(6)
3.1.2 Sealed Fiber-Optic EFPI Fabricated by Femtosecond Laser
69(3)
3.1.3 Intrinsic Fiber-Optic FPI Fabricated by Femtosecond Laser
72(1)
3.2 Deep UV Laser Micromachining System
73(7)
3.2.1 Direct Engraving of FFPI Strain Sensor on Silica Fibers
74(1)
3.2.2 Self-Enclosed FFPI Strain, Pressure, Refractive Index, and Temperature Sensors
75(3)
3.2.3 Sapphire FFPI Sensor
78(2)
3.3 FIB Milling (Tapered Fibers)
80(8)
3.4 Chemical Etching (Doped Fibers)
88(10)
3.4.1 Strain Sensor Fabricated by Chemical Etching
88(2)
3.4.2 Pressure Sensor Fabricated by Chemical Etching
90(2)
3.4.3 Vibration Sensor Fabricated by Combination of Chemical Etching and FIB
92(6)
3.5 Summary
98(3)
References
98(3)
Chapter 4 Physical and Biochemical Sensors Based on FFPIs
101(28)
4.1 Physical Sensors
101(12)
4.1.1 Temperature Sensors
101(3)
4.1.2 Strain, Displacement, and Force Sensors
104(3)
4.1.3 Pressure Sensors
107(4)
4.1.4 Acoustics and Ultrasonic Sensors
111(1)
4.1.5 Electric- and Magnetic-Related Sensors
112(1)
4.2 Biochemical Sensors
113(6)
4.2.1 Refractive Index Sensors
114(2)
4.2.2 Humidity Sensors
116(1)
4.2.3 Gas Sensors
117(2)
4.2.4 Other Types of Biochemical FFPI Sensors
119(1)
4.3 Temperature-Insensitive or Temperature-Compensated Sensing
119(10)
References
121(8)
Chapter 5 Interrogation and Multiplexing Techniques for FFP Sensors
129(26)
5.1 Introduction
129(1)
5.2 Intensity Interrogating Methods and Instruments
129(3)
5.2.1 Single-Wavelength Intensity Interrogating Method and Instrument
129(2)
5.2.2 Intensity Interrogating Method with Multiple Wavelengths
131(1)
5.3 Spectral Interrogating for Absolute OPD Demodulation
132(5)
5.3.1 Spectral Interrogation Based on Spectrometers
132(2)
5.3.2 Spectral Interrogation Based on Tunable Filters
134(2)
5.3.3 Spectral Interrogation Based on Swept or Tunable Lasers
136(1)
5.3.4 Comparison of Different Spectral Interrogation Methods
137(1)
5.4 OPD Demodulation Methods
137(6)
5.4.1 OPD Demodulation Based on Spectrum Interrogation and Fringe Counting
137(1)
5.4.2 OPD Demodulation Based on Spectrum Interrogation and Fourier Transform
138(3)
5.4.3 OPD Demodulation Based on Interferometric Scanning in WLI
141(2)
5.4.4 Comparison of OPD Demodulation Methods
143(1)
5.5 Multiplexing Methods of FFP Sensors
143(12)
5.5.1 Spatial Frequency-Division Multiplexing
143(1)
5.5.2 Coarse Wavelength-Division Multiplexing
144(1)
5.5.3 SFDM/CWDM of FFP Sensors
145(1)
5.5.4 Time-Division Multiplexing
146(2)
5.5.5 Multiplexing of FFP Sensors Based on Microwave-Assisted Reconstruction
148(1)
5.5.6 Coherence Multiplexing Based on Interferometric Scanning WLI
149(1)
5.5.7 Comparison of Multiplexing Methods
150(1)
References
151(4)
Chapter 6 Applications
155(20)
6.1 Structural Health Monitoring
155(2)
6.2 Energy (Oil, Gas, Electricity)
157(3)
6.3 Aerospace (Aircraft, Engines)
160(3)
6.4 Biomedicine
163(6)
6.5 Other Applications
169(6)
References
172(3)
Index 175
Yun-Jiang Rao is dean of the School of Communication & Information Engineering, and director of the Key Lab of Optical Fiber Sensing & Communications at the University of Electronic Science and Technology of China. Prior to joining there, he was a research fellow/senior research fellow at the University of Kent at Canterbury, UK. He is a fellow of the International Society of Optical Engineering and has been working on fiber-optic Fabry-Perot sensors since he joined the groups of two outstanding pioneers of fiber-optic sensors, Prof. Brian Culshaw and Prof. David Jackson, in the early 1990s. He has authored or co-authored more than 300 peer-reviewed papers in scientific journals and international conference proceedings, which gained >2000 citations in Web of Science (H-index of 28) and >6000 citations in Google Scholar (H-index of 38). He serves as an associate editor of IEEE/OSA Journal of Lightwave Technology, and Optics and Laser Technology, and is also the editor-in-chief of Photonic Sensors.



Zeng-Ling Ran is an associate professor at the Optical Fiber Technology Research Laboratory of the University of Electronic Science and Technology of China.



Yuan Gong is an associate professor at the Optical Fiber Technology Research Laboratory of the University of Electronic Science and Technology of China.