Muutke küpsiste eelistusi

E-raamat: Field Computation for Accelerator Magnets: Analytical and Numerical Methods for Electromagnetic Design and Optimization

(CERN, Geneva)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 08-Feb-2011
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527635474
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 279,05 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 08-Feb-2011
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527635474
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Written by a leading expert on the electromagnetic design and engineering of superconducting accelerator magnets, this book offers the most comprehensive treatment of the subject to date. In concise and easy-to-read style, the author lays out both the mathematical basis for analytical and numerical field computation and their application to magnet design and manufacture. Of special interest is the presentation of a software-based design process that has been applied to the entire production cycle of accelerator magnets from the concept phase to field optimization, production follow-up, and hardware commissioning.

Included topics:

Technological challenges for the Large Hadron Collider at CERN
Algebraic structures and vector fields
Classical vector analysis
Foundations of analytical field computation
Fields and Potentials of line currents
Harmonic fields
The conceptual design of iron- and coil-dominated magnets
Solenoids
Complex analysis methods for magnet design
Elementary beam optics and magnet polarities
Numerical field calculation using finite- and boundary-elements
Mesh generation
Time transient effects in superconducting magnets, including superconductor magnetization and cable eddy-currents
Quench simulation and magnet protection
Mathematical optimization techniques using genetic and deterministic algorithms


Practical experience from the electromagnetic design of the LHC magnets illustrates the analytical and numerical concepts, emphasizing the relevance of the presented methods to a great many applications in electrical engineering. The result is an indispensable guide for high-energy physicists, electrical engineers, materials scientists, applied mathematicians, and systems engineers.

Arvustused

The volume under review is an excellent guide for high-energy physicists, electrical engineers, materials scientists, applied mathematicians, and systems engineers.  (Zentralblatt MATH, 2012)

Preface xv
Notation xix
Magnets for Accelerators
1(48)
The Large hadron Collider
2(5)
A Magnet Metamorphosis
7(9)
Superconductor Technology
16(11)
Critical Current Density of Superconductors
16(3)
Strands
19(3)
Cables
22(5)
The LHC Dipole Coldmass
27(2)
Superfluid Helium Physics and Cryogenic Engineering
29(3)
Cryostat Design and Cryogenic Temperature Levels
32(1)
Vacuum Technology
33(2)
Powering and Electrical Quality Assurance
35(3)
Electromagnetic Design Challenges
38(11)
The CERN Field Computation Program ROXIE
42(2)
Analytical and Numerical Field Computation
44(2)
References
46(3)
Algebraic Structures and Vector Fields
49(36)
Mappings
49(1)
Groups, Rings, and Fields
50(1)
Vector Space
51(3)
Linear Independence and Basis
53(1)
Linear Transformations
54(2)
Affine Space
56(4)
Coordinates
58(2)
Inner Product Space
60(6)
Metric Space
62(1)
Orthonormal Bases
63(1)
The Erhard Schmidt Orthogonalization
64(2)
Orientation
66(2)
A Glimpse on Topological Concepts
68(4)
Homotopy
69(1)
The Boundary Operator
70(2)
Exterior Products
72(3)
Identities of Vector Algebra
75(1)
Vector Fields
75(2)
Phase Portraits
77(3)
The Physical Dimension System
80(5)
References
84(1)
Classical Vector Analysis
85(52)
Space Curves
86(7)
The Frenet Frame of Space Curves
88(5)
The Directional Derivative
93(1)
Gradient, Divergence, and Curl
94(2)
Identities of Vector Analysis
96(1)
Surfaces in E3
96(2)
The Differential
98(4)
Differential Operators on Scalar and Vector Fields in r and r
102(1)
The Path Integral of a Vector Field
103(1)
Coordinate-Free Definitions of the Differential Operators
104(2)
Integral Theorems
106(5)
The Kelvin-Stokes Theorem
106(1)
Green's Theorem in the plane
107(1)
The Gauss-Ostrogradski Divergence Theorem
108(1)
A Variant of the gauss Theorem
108(1)
Green's First Identity
109(1)
Green's Second Identity (Green's Theorem)
110(1)
Vector Form of Green's Theorem
110(1)
Generalization of the Integration-by-Parts Rule
110(1)
The Stratton Theorems
111(1)
Curvilinear Coordinates
111(4)
Components of a Vector Field
113(1)
Contravariant Coefficients
114(1)
Covariant Coefficients
115(1)
Integration on Space Elements
115(2)
Orthogonal Coordinate Systems
117(2)
Differential Operators
119(6)
Cylindrical Coordinates
121(1)
Spherical Coordinates
122(3)
The Lemmata of Poincare
125(1)
De Rham Cohomology
126(3)
Fourier Series
129(8)
References
136(1)
Maxwell's Equations and Boundary Value Problems in Magnetostatics
137(50)
Maxwell's Equations
138(5)
The Global Form
138(1)
The Integral Form
139(2)
The Local Form
141(1)
Maxwell's Original Set of Equations
142(1)
Kirchhoff's Laws
143(1)
Conversion of Energy in Electromagnetic Fields
143(1)
Constitutive Equations
144(2)
Boundary and Interface Conditions
146(5)
Magnetic Material
151(14)
Ferromagnetism
152(3)
Measurement of Hysteresis Curves
155(4)
Magnetic Anisotropy in Laminated Iron Yokes
159(1)
Magnetostriction
160(1)
Permanent Magnets
161(2)
Magnetization Currents and Fictitious Magnetic Charges
163(2)
Classification Diagrams for Electromagnetism
165(2)
Field Lines
167(4)
Classification of Electromagnetic Field Problems
167(4)
Boundary Value Problems 1: Magnetostatic
171(9)
Scalar-Potential Formulations
171(2)
Vector-Potential Formulations
173(6)
The Scalar Laplace Equation in 2D
179(1)
Boundary Value Problems 2: Magnetic Diffusion Problems
180(7)
References
184(3)
Fields and Potentials of Line-Currents
187(50)
Green Functions
188(1)
Potentials on Bounded Domains
189(2)
Properties of Harmonic Fields
191(2)
The Biot-Savart Law
193(4)
Field of a Straight Line-Current Segment
197(3)
Field of a Ring Current
200(3)
The Magnetic Dipole Moment
203(2)
The Magnetic Double Layer
205(4)
The Solid Angle
206(2)
Approximating the Solid Angle of a Current Loop
208(1)
The Image-Current Method
209(7)
Plane Boundaries
211(2)
Circular Boundaries
213(3)
Stored Energy in a Magnetostatic Field
216(8)
Self and Mutual Inductance
218(2)
The geometric Mean Distance
220(2)
Magnetic Flux
222(2)
Magnetic Energy in Nonlinear Circuits
224(3)
Differential Inductance
224(3)
Magnetic Forces and the Maxwell Stress Tensor
227(3)
Fields and Potentials of Magentization Currents
230(2)
Magnetic Levitation
232(5)
References
235(2)
Field Harmonics
237(32)
Circular Harmonics
238(19)
Determining the Multipole Coefficients
240(13)
Magnetic Shielding; Permeable Cylindrical Shell in a Uniform Field
253(2)
Integrated Multipoles in Accelerator Magnets
255(2)
Spherical Harmonics
257(8)
Legendre Series Expression for the Vector Potential
262(1)
Determining the Zonal Harmonics
263(2)
Separation in Cartesian Coordinates
265(4)
References
268(1)
Iron-Dominated Magnets
269(24)
C-Shaped Dipole
270(1)
Quadrupole
271(1)
Ohmic Losses in Dipole and Quadrupole Coils
272(1)
Magnetic Circuit with Varying Yoke Width
272(2)
Branched Circuits
274(1)
Ideal Pole Shapes of Iron-Dominated Magnets
275(3)
Shimming
277(1)
Rogowski Profiles
278(3)
Combined-Function Magnets
281(1)
Permanent Magnet Excitation
282(5)
Cooling of Normal-Conducting Magnets
287(6)
References
291(2)
Coil-Dominated Magnets
293(34)
Accelerator Magnets
294(15)
Generation of Pure Multipole Fields
295(10)
Sensitivity to Coil-Block Positioning Errors
305(1)
Force Distribution
305(1)
Margins in the LHC Main Dipole
306(3)
Combined-Function Magnets and the Unipolar Current Dipole
309(1)
Rectangular Block-Coil Structures
310(1)
Field Enhancement in Coil Ends of Accelerator Magnets
311(1)
Magnetic Force Distribution in the LHC Dipole Coil Ends
312(2)
Nested Helices
314(1)
Solenoids
315(12)
Helmholtz and Maxwell Coils
315(2)
Fabry Factors
317(4)
Off-Axis Fields
321(3)
Zonal Harmonics
324(1)
References
325(2)
Complex Analysis Methods for Magnet Design
327(36)
The Field of Complex Numbers
328(1)
Holomorphic Functions and the Cauchy-Riemann Equations
329(2)
Power Series
331(2)
The Complex Form of the Discrete Fourier Transform
333(2)
Complex Potentials
335(1)
Conformal Mappings
336(2)
Complex Representation of Field Quality in Accelerator Magnets
338(6)
Feed-Down
338(4)
Reference Frame Rotation
342(1)
Reflection about the Vertical Axis
343(1)
Complex Integration
344(5)
Cauchy's Theorem and the Integral Formula
345(1)
Properties of Holomorphic Functions
346(2)
The Residual Theorem
348(1)
The Field and Potential of a Line Current
349(2)
Series Expansion of the Line-Current Field
350(1)
Circular Sector Windings
351(1)
Multipoles Generated by a Magnetic Dipole Moment
351(1)
Beth's Current-Sheet Theorem
352(2)
Electromagnetic Forces on the Dipole Coil
354(2)
The Field of a Polygonal Conductor
356(2)
Magnetic Flux Density Inside Elliptical Conductors
358(5)
References
362(1)
Field Diffusion
363(20)
Time Constants and Penetration Depths
363(2)
The Laplace Transform
365(5)
Conductive Slab in a Time-Transient Applied Field
370(6)
The Step-Excitation Function
371(2)
Linear Ramp of the Applied Field
373(2)
Sinusoidal Excitation
375(1)
Eddy Currents in the LHC Cold Bore and Beam Screen
376(7)
References
382(1)
Elementary Beam Optics and Field Requirements
383(32)
The Equations of Charged Particle Motion in a Magnetic Field
383(4)
Magnetic Rigidity and the Bending Magnets
387(2)
The Linear Equations of Motion
389(1)
Weak Focusing
390(2)
Thin-Lens Approximations
392(1)
Transfer Matrices
393(2)
Strong Focusing and the FODO Cell
395(2)
The Beta Function, Tune, and Transverse Resonances
397(10)
Off-Momentum Particles
407(8)
Dispersion
408(2)
Chromaticity
410(2)
Field Error Specifications
412(1)
References
413(2)
Reference Frames and Magnet Polarities
415(18)
Magnet Polarity Conventions
416(4)
Spool-Piece Correctors
418(1)
Twin-Aperture and Two-in-One Magnets
418(2)
Reference Frames
420(6)
Multipole Expansions
421(1)
The Magnet Frame
421(2)
The Local Reference Frame of Beam 1
423(1)
Definition of Field Errors in the Accelerator Design Program MAD
424(1)
Transformation between the Magnet and the Beam 1 Frames
424(2)
Orbit Correctors
426(1)
Position of the Connection Terminals
426(1)
Turned Magnets and Magnet Assemblies
427(2)
Electrical Circuits in the LHC Machine
429(4)
References
432(1)
Finite-Element Formulations
433(22)
One-Dimensional Finite-Element Analysis
434(7)
Quadratic Elements
439(2)
FEM with the Vector-Potential (Curl-Curl) Formulation
441(4)
The Weak Form in 3D
443(1)
The Weak Form in 2D
444(1)
Complementary Formulations
445(10)
FEM with Reduced vector-Potential Formulation
445(4)
FEM, Employing the Vector Poisson Equation
449(2)
The A-Ø Formulation for Eddy-Current Problems
451(2)
References
453(2)
Discretization
455(26)
Quadrilateral Mesh Generation
456(9)
Parametric Modeling
457(1)
Topology Decomposition
458(1)
Domain Decomopsition
459(1)
Meshing of Simple Domains
460(1)
Smoothing
461(1)
Remeshing and Morphing
462(3)
Finite-Element Shape Functions
465(16)
The Linear Triangular Element, 2D
466(3)
Barycentric Coordinates
469(1)
Local Coordinates
470(1)
Mapped Elements
471(3)
Generation of the Shape Functions
474(2)
Transformation of Differential Operators
476(3)
References
479(2)
Coupling of Boundary and Finite Elements
481(22)
The Boundary-Element Method
482(5)
The Node Collocation Method
486(1)
BEM-FEM Coupling
487(2)
BEM-FEM Coupling using the Total Scalar-Potential
489(2)
The M(B) Iteration
491(1)
Applications
492(11)
2D Calculations
492(3)
Saturation Effects in the Iron Yoke
495(1)
3D Calculations
496(6)
References
502(1)
Superconductor Magnetization
503(40)
Superconductor Magnetization
507(2)
Critical Surface Modeling
509(4)
The Critical State Model
513(3)
The Ellipse on a Cylinder Model
516(3)
Nested Intersecting Circles and Ellipses
519(2)
Hysteresis Modeling
521(6)
Magnet Field Errors due to the Superconducting Filament Magnetization
527(3)
The M(B) Iteration
530(2)
Software Implementation
532(1)
Applications to Magnet Design
532(11)
Compensation of Multipole Field Errors
534(3)
Nested Magnets
537(3)
References
540(3)
Interstrand Coupling Currents
543(32)
Analysis of Linear Networks
544(11)
The Linear U(I) Relation in a Branch
545(2)
The Topology of Networks
547(1)
The Branch/Node Incidence Matrix and the Node-Potential Method
548(3)
The Mesh Matrix and the Mesh-Current Method
551(2)
Transient Field Analysis
553(2)
A Network Model for the Interstrand Coupling Currents
555(2)
Steady-State Calculations
557(3)
Spectral Analysis of the Solution
559(1)
Time-Transient Analysis
560(2)
Spectral Analysis of the Solution
561(1)
The M(B) Iteration Scheme for ISCCs
562(1)
Approximation for the Interstrand Coupling Currents
563(1)
Interfilament Coupling Currents
564(2)
Applications to Magnet Design
566(9)
Field Advance
566(1)
Rapid Cycling Magnets
567(5)
References
572(3)
Quench Simulation
575(34)
The Heat Balance Equation
577(3)
Electrical Network Models of Superconductors
580(2)
Current Sharing
582(2)
Winding Schemes and Equivalent Electrical Circuit Diagrams
584(1)
Quench Detection
585(1)
Magnet Protection
586(3)
Numerical Quench Simulation
589(6)
The Thermal Model
591(3)
External Electrical Circuits
594(1)
The Time-Stepping Algorithm
595(1)
Applications
596(13)
Validating the Model
598(3)
Fast Ramping Magnets
601(6)
References
607(2)
Differential Geometry Applied to Coil-End Design
609(28)
Constant-Perimeter Coil Ends
612(3)
Differential Geometry of the Strip Surfaces
615(6)
The Frenet-Serret Equations for Strips
616(2)
The Generators of Strips
618(3)
Discrete Theory of the Strip Surface
621(6)
Optimization of the Strip Surface
627(3)
Coil-End Transformations
630(1)
Corrector Magnet Coil End with Ribbon Cables
631(2)
End-Spacer Manufacturing
633(1)
Splice Configurations
634(3)
References
636(1)
Mathematical Optimization Techniques
637(108)
Mathematical Formulation of the Optimization Problem
639(2)
Optimality Criteria for Unconstrained Problems
641(1)
Karush-Kuhn-Tucker Conditions
642(2)
Pareto Optimality
644(2)
Methods for Decision Making
646(8)
Goal Programming
646(4)
The Pareto-Strength Algorithm
650(1)
Constraint Formulation and Sensitivity Analysis
651(2)
Payoff Tables
653(1)
Box Constraints
654(1)
Treatment of Nonlinear Constraints
655(1)
Deterministic Optimization Algorithms
655(12)
Line Search
656(3)
Multidimensional Search Methods
659(1)
Gradient Methods
660(7)
Genetic Optimization Algorithms
667(14)
Parameter Representation
669(1)
Gray Coding
669(2)
Genetic Operators
671(7)
Convergence
678(3)
Applications
681(22)
Conceptual Coil Design with Genetic Algorithms
683(2)
Deterministic Optimization of Coil Cross Sections
685(3)
Yoke Design as a Material-Distribution Problem
688(1)
Shape Optimization of the Iron Yoke
689(2)
Payoff Tables for Dipole Designs
691(2)
Lagrange Multiplier Estimation
693(1)
Manufacturing Tolerances
694(2)
Tuning Range
696(1)
Tracing of Manufacturing Errors
697(3)
References
700(3)
Appendix
Material Property Data for Quench Simulations
703(14)
Mass Density
703(2)
Electrical Resistivity
705(3)
Thermal Conductivity
708(3)
Heat Capacity
711(4)
References
715(2)
The LHC Magnet Zoo
717(12)
Superconducting Magnets
717(9)
Normal-Conducting Magnets
726(3)
References
729(2)
Ramping the LHC Dipoles
731(4)
SI (MKSA) Units
735(2)
Glossary
737(8)
Index 745
Stephan Russenschuck received his doctorate in electrical engineering from the Darmstadt University of Technology, Germany, specializing in optimization of electrical machines. He joined the European Organization for Nuclear Research (CERN) in 1991 to work on the electromagnetic design of superconducting magnets for the LHC particle accelerator. During the years of LHC development and construction he was responsible for a magnet model construction, the electrical quality assurance during hardware installation, and the polarities of the nearly 11,000 magnet elements. Dr. Russenschuck is the author of the ROXIE program package and a leading authority on mathematical optimization, electromagnetic design, and engineering of accelerator magnets. For seventeen years he has served as a member of the Board of the International COMPUMAG Society. Since 2000 Dr. Russenschuck has been lecturering at the Vienna University of Technology, at the Joint Universities Accelerator School (JUAS), and the CERN Accelerator School (CAS).