Muutke küpsiste eelistusi

E-raamat: Field Emission Electronics

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 196,98 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is dedicated to field emission electronics, a promising field at the interface between “classic” vacuum electronics and nanotechnology. In addition to theoretical models, it includes detailed descriptions of experimental and research techniques and production technologies for different types of field emitters based on various construction principles. It particularly focuses on research into and production of field cathodes and electron guns using recently developed nanomaterials and carbon nanotubes. Further, it discusses the applications of field emission cathodes in new technologies such as light sources, flat screens, microwave and X-ray devices.

1 Basic Principles
1(42)
1.1 Introduction
1(10)
1.2 Fowler--Nordheim Theory of Field Emission from Metals
11(9)
1.3 Classical Morgulis-Stratton Theory of Field Emission from Semiconductors
20(7)
1.4 Basics of Muller Field Emission Microscope Theory
27(8)
1.5 Disadvantages of Classical Field Emission Theories and Limits to Their Applicability
35(8)
References
40(3)
2 Experimental Equipment and Technique
43(72)
2.1 Field Emission Microscopes
43(14)
2.1.1 Design of Field Emission Microscopes
47(3)
2.1.2 Special Designs
50(7)
2.2 Field-Electron Total Energy Analyzers
57(10)
2.3 Field Emission Microscopes of Universal Design
67(7)
2.4 Electronic Systems
74(2)
2.5 Emitter Technology
76(24)
2.5.1 Metal Tips
76(3)
2.5.2 Machining
79(1)
2.5.3 Foils, Sheets
80(20)
2.6 Some Technological Cases of Application of a Field Emission Microscope
100(15)
2.6.1 First-Type Migration
104(1)
2.6.2 Second-Type Migration
104(1)
2.6.3 Third-Type Migration
105(4)
References
109(6)
3 Modern Developments in Theoretical Research of Field Emission
115(56)
3.1 Introduction
115(10)
3.1.1 Emitter-Shape Approximation
121(1)
3.1.2 Potential and Field-Intensity Computation Methods
121(3)
3.1.3 Comparison of Theoretical and Experimental Results
124(1)
3.2 Thermal-Field Emission (TFE) from Metals
125(10)
3.3 Field Emission Spectroscopy. Energy Distribution of Field Electrons and Thermofield Electrons Emitted from a Metal
135(6)
3.3.1 Energy Distribution of Thermal-Field Electrons
138(3)
3.4 Phenomenological Theories of Field Emission from Semiconductors
141(14)
3.5 Theoretical Aspects of Phenomena and Processes on the Surface During Field Emission
155(16)
References
166(5)
4 Simulation of Structure and Parameters of Field Emission Cathodes
171(58)
4.1 Simulation of a Potential Barrier and Barrier Permeability by Experimental Data
171(10)
4.2 Computation of Theoretical Characteristics of a Metal Field Emission Cathode for a Model Configuration of Its Apex
181(6)
4.3 Simulation of the Metal Field Emission Cathode Surface Structure
187(7)
4.4 Simulation of Distribution of the Work Function Over the Field Emission Cathode Surface
194(7)
4.5 Theoretical Studies of the Physical Processes Affecting the Field Emission Current Density Limits
201(13)
4.6 Special Properties of Field Emission in Presence of Strong Electric Fields and High Current Densities
214(6)
4.7 Modeling of Elements of Beam Formation and Control Systems with Controlling Magnetic Field (High-Precision Beams)
220(9)
References
225(4)
5 Field Emission Cathodes
229(66)
5.1 Cardinal Problems of Field Emission Cathodes
229(5)
5.2 Pointed and Multiple-Apex Field Emission Cathodes
234(15)
5.3 Blade and Wire Field Emission Cathodes
249(6)
5.4 Film Field Emission Cathodes
255(8)
5.5 Field Emission Cathodes Made of Whiskers
263(10)
5.6 Field Emission Nanostructures Based on Nanoporous Anodic Aluminum Oxide
273(6)
5.7 Other Field Emission Cathode Types
279(16)
References
286(9)
6 Carbon-Based Field-Emission Cathodes
295(74)
6.1 Carbon Fibers
295(11)
6.1.1 Polyacrylonitrile Carbon Fibers
295(8)
6.1.2 Carbon Nanofibers
303(3)
6.2 Carbon Nanotubes
306(11)
6.2.1 Structural and Field-Emission Features
306(5)
6.2.2 Some Carbon Nanotube Growing Methods
311(6)
6.3 Non-oriented Structures
317(4)
6.4 Carbon Foils
321(8)
6.5 Large-Size Flat Field Emission Cathodes
329(9)
6.5.1 Electrophoresis
330(4)
6.5.2 Screen Printing
334(3)
6.5.3 Structural Materials
337(1)
6.6 Emissivity Improvement
338(7)
6.6.1 Field Emission Cathode Forming
338(1)
6.6.2 Pre-treatment
339(3)
6.6.3 Coatings and Doping
342(3)
6.7 Features of Measurement and Analysis of Current-Voltage Characteristics of Carbon Materials
345(24)
6.7.1 Ways to Measure Current-Voltage Characteristics and Their Features
345(6)
6.7.2 Technique of Long-Term Field-Emission Tests and Experimental Data Analysis
351(4)
6.7.3 Evaluation of Uniformity of Emission from a Field Emission Cathode Surface
355(2)
6.7.4 Developed Algorithm of Collection and Preprocessing of Experimental Data
357(4)
References
361(8)
7 Computation of Field-Emission Cathode-Based Electron Guns
369(58)
7.1 Introduction
369(5)
7.2 General Problem of Computation of the Optimum Structure of Electron Guns Based on One-tip and Multi-tip Field Emission Cathodes, i.e. the Almazov--Egorov Model
374(14)
7.3 Mathematical Simulation of Model Triode Electron-Optical Systems
388(9)
7.4 Calculation of Distribution of the Electric Field in the Forming and Controlling Systems Based on a Field-Emission Cathode and a Small-Aperture Focusing Diaphragm System
397(4)
7.5 Calculation of Optimum Characteristics in the Forming and Controlling Systems Based on a Field-Emission Cathode and a Focusing Diaphragm System
401(10)
7.6 Computation of Electron Paths in a Field-Emission Cathode-Based System
411(16)
References
424(3)
8 Field Emission Cathode-Based Devices and Equipment
427(112)
8.1 Light Sources
427(32)
8.1.1 Operating Principle
429(3)
8.1.2 Small-Button Glass Cathodoluminescent Lamps
432(7)
8.1.3 Flat Cathodoluminescent Light Sources
439(6)
8.1.4 Cylindrical Cathodoluminescent Light Sources
445(2)
8.1.5 Spherical Cathodoluminescent Light Sources
447(1)
8.1.6 Ultraviolet Lamps
448(3)
8.1.7 Cathodoluminescent Light-Source Application Guidelines
451(8)
8.2 Hat Display Screens
459(24)
8.2.1 Display Screens with Pointed Field Emission Cathodes
460(3)
8.2.2 Diode Display Screens
463(4)
8.2.3 Triode Display Screens
467(7)
8.2.4 Multielectrode Display Screens
474(1)
8.2.5 Lateral Display Screens
475(2)
8.2.6 Screens with Reversed Control Electrodes
477(2)
8.2.7 Thin-Film Field Emission Cathode-Based Displays
479(4)
8.3 Microwave Devices
483(11)
8.3.1 Field Emission Microtriodes and Amplifiers
486(3)
8.3.2 Magnetrons
489(3)
8.3.3 Traveling-Wave Tubes
492(1)
8.3.4 Reflex Klystrons
493(1)
8.4 X-ray Tubes
494(6)
8.5 Electron Guns
500(16)
8.5.1 General Principles
500(1)
8.5.2 Field Emission Localization Methods
501(2)
8.5.3 Low-Power Electron Guns
503(11)
8.5.4 High-Power Electron Guns
514(2)
8.6 Other Types of Devices
516(23)
8.6.1 Heaters
516(4)
8.6.2 Sensors
520(1)
8.6.3 Memory Cells
521(2)
8.6.4 Ion Sources
523(2)
8.6.5 Full-Color Projectors
525(2)
References
527(12)
Conclusion (Prospective Development) 539(20)
Index 559
Nikolay Egorov is Doctor of Science in physics and mathematics, professor and head of the department of Electromechanical and Computer Systems Modelling in St.Petersburg State University. Hes an author of more than 300 research papers, 4 monographies. Hes a cavalier of Order "For Merit to the Fatherland" of II class, laureate of St.Petersburg University prize for best research and medal of honour of  German national organization for hydrogen and fuel technologies (NOW). Hes also a member of the International Steering Committee of the International Vacuum Electron Sources Conference (IVESC) and the editorial board of HYdrogen - POwer THeoretical and Engineering Solutions International Symposium (HYPOTHESIS).





Evgeny Sheshin is professor and deputy head of Vacuum Electronics department of Moscow institute of Physics and Technology. He has more than 500 research papers, 60 patents in several countries, 3 books (in Russian). He has won a gold medal from European Chamber of Industry and Science for fundamental contributions in electronics.