Muutke küpsiste eelistusi

E-raamat: Financial Data Resampling for Machine Learning Based Trading: Application to Cryptocurrency Markets

Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents a system that combines the expertise of four algorithms, namely Gradient Tree Boosting, Logistic Regression, Random Forest and Support Vector Classifier to trade with several cryptocurrencies. A new method for resampling financial data is presented as alternative to the classical time sampled data commonly used in financial market trading. The new resampling method uses a closing value threshold to resample the data creating a signal better suited for financial trading, thus achieving higher returns without increased risk. The performance of the algorithm with the new resampling method and the classical time sampled data are compared and the advantages of using the system developed in this work are highlighted.

Arvustused

The book contains little theory and presents mostly detailed numerical experiments, it reads very engagingly and inspires with many ideas. It is certainly not a reference book but rather a short monograph on a very clearly defined topic. It will be interesting to see whether the trading strategies presented can be transferred from the crypto markets to the presumably more efficient standard stock markets as published strategies tend to make markets more efficient. (Volker H. Schulz, SIAM Review, Vol. 64 (3), September, 2022)

Chapter 1 - Introduction       



Chapter 2 - Related work     



Chapter 3 - Implementation               



Chapter 4 - Results  



Chapter 5 - Conclusions and future work 
Tomé Almeida Borges is a data scientist at Santander Portugal since December 2019. He received the masters degree in Electrical and Computer Engineering from Instituto Superior Técnico, Technical University of Lisbon, Portugal, in 2019. His research activity is focused on pattern recognition and data resampling methods of financial markets.





Rui Ferreira Neves is a professor at Instituto Superior Técnico since 2005. He received the Diploma in Engineering and the Ph.D. degrees in Electrical and Computer Engineering from the Instituto Superior Técnico, Technical University of Lisbon, Portugal, in 1993 and 2001, respectively. In 2006, he joined Instituto de Telecomunicações (IT) as a research associate. His research activity deals with evolutionary computation and pattern matching applied to the financial markets, sensor networks, embedded systems and mixed signal integrated circuits. He uses both fundamental, technical and pattern matching indicators to find the evolutionof the financial markets.