Preface |
|
xv | |
Author |
|
xix | |
|
|
1 | (24) |
|
1.1 Fin Field-Effect Transistors |
|
|
1 | (1) |
|
1.2 Overview of MOSFET Devices for Integrated Circuit Manufacturing |
|
|
1 | (7) |
|
1.2.1 Challenges of MOSFET Scaling at the Nanometer Node |
|
|
4 | (1) |
|
1.2.1.1 Leakage Current in Short Channel MOSFETs |
|
|
4 | (2) |
|
1.2.1.2 Variability in MOSFETs |
|
|
6 | (1) |
|
1.2.2 Physics of MOSFET Scaling Challenges |
|
|
7 | (1) |
|
1.3 Alternative Device Concepts |
|
|
8 | (5) |
|
1.3.1 Undoped or Lightly Doped Channel MOSFETs |
|
|
9 | (1) |
|
1.3.1.1 Deeply Depleted Channel MOSFETs |
|
|
9 | (1) |
|
1.3.1.2 Buried-Halo MOSFETs |
|
|
10 | (1) |
|
1.3.2 Thin-Body Field-Effect Transistors |
|
|
11 | (1) |
|
1.3.2.1 Single-Gate Ultrathin-Body Field-Effect Transistors |
|
|
11 | (1) |
|
1.3.2.2 Multiple-Gate Field-Effect Transistors |
|
|
12 | (1) |
|
1.4 FinFET Devices for VLSI Circuits and Systems |
|
|
13 | (2) |
|
1.5 A Brief History of FinFET Devices |
|
|
15 | (3) |
|
|
18 | (1) |
|
|
19 | (6) |
|
Chapter 2 Fundamentals of Semiconductor Physics |
|
|
25 | (60) |
|
|
25 | (1) |
|
2.2 Semiconductor Physics |
|
|
25 | (30) |
|
|
26 | (1) |
|
|
27 | (2) |
|
2.2.3 Intrinsic Semiconductors |
|
|
29 | (1) |
|
2.2.3.1 Intrinsic Carrier Concentration |
|
|
29 | (2) |
|
2.2.3.2 Effective Mass of Electrons and Holes |
|
|
31 | (1) |
|
2.2.4 Extrinsic Semiconductors |
|
|
31 | (2) |
|
2.2.4.1 Fermi Level in Extrinsic Semiconductor |
|
|
33 | (2) |
|
2.2.4.2 Fermi Level in Degenerately Doped Semiconductor |
|
|
35 | (1) |
|
2.2.4.3 Electrostatic Potential in Semiconductor and Carrier Concentration |
|
|
36 | (2) |
|
2.2.4.4 Quasi-Fermi Level |
|
|
38 | (1) |
|
2.2.5 Carrier Transport in Semiconductors |
|
|
39 | (1) |
|
2.2.5.1 Drift of Carriers: Carrier Motion in Electric Field |
|
|
39 | (5) |
|
2.2.5.2 Diffusion of Carriers |
|
|
44 | (3) |
|
2.2.6 Generation-Recombination of Carrier |
|
|
47 | (1) |
|
|
48 | (1) |
|
2.2.6.2 Recombination Processes |
|
|
48 | (3) |
|
2.2.7 Basic Semiconductor Equations |
|
|
51 | (1) |
|
2.2.7.1 Poisson's Equation |
|
|
51 | (2) |
|
2.2.7.2 Transport Equations |
|
|
53 | (1) |
|
2.2.7.3 Continuity Equations |
|
|
53 | (2) |
|
2.3 Theory of n-Type and p-Type Semiconductors in Contact |
|
|
55 | (26) |
|
2.3.1 Basic Features of pn-Junctions |
|
|
55 | (2) |
|
2.3.2 Built-Iin Potential |
|
|
57 | (1) |
|
|
58 | (1) |
|
|
58 | (4) |
|
2.3.4 pn-Junctions under External Bias |
|
|
62 | (1) |
|
2.3.4.1 One-Sided Step Junction |
|
|
63 | (2) |
|
2.3.5 Carrier Transport Across pn-Junctions |
|
|
65 | (1) |
|
2.3.5.1 Relationship between Minority Carrier Density and Junction Potential |
|
|
65 | (4) |
|
2.3.6 pn-Junctions I - V Characteristics |
|
|
69 | (2) |
|
2.3.6.1 Temperature Dependence of pn-Junction Leakage Current |
|
|
71 | (1) |
|
2.3.6.2 Limitations of pn-Junction Current Equation |
|
|
72 | (2) |
|
|
74 | (1) |
|
2.3.6.4 Junction Breakdown Voltage |
|
|
75 | (1) |
|
2.3.7 pn-Junction Dynamic Behavior |
|
|
76 | (1) |
|
2.3.7.1 Junction Capacitance |
|
|
77 | (2) |
|
2.3.7.2 Diffusion Capacitance |
|
|
79 | (1) |
|
2.3.7.3 Small-Signal Conductance |
|
|
80 | (1) |
|
2.3.8 pn-Junction Equivalent Circuit |
|
|
80 | (1) |
|
|
81 | (1) |
|
|
82 | (3) |
|
Chapter 3 Multiple-Gate Metal-Oxide-Semiconductor (MOS) System |
|
|
85 | (48) |
|
|
85 | (1) |
|
3.2 Multigate MOS Capacitors at Equilibrium |
|
|
85 | (14) |
|
3.2.1 Properties of Isolated Metal, Oxide, and Semiconductor Materials |
|
|
87 | (1) |
|
|
88 | (2) |
|
3.2.2 Metal, Oxide, and Semiconductor Materials in Contact Forming MOS Systems |
|
|
90 | (1) |
|
3.2.2.1 MOS Systems with MG Workfunction at Silicon Band-Edges |
|
|
90 | (2) |
|
3.2.2.2 MOS Systems with Silicon-Midgap MG Workfunction |
|
|
92 | (2) |
|
|
94 | (1) |
|
3.2.3.1 Interface Trapped Charge |
|
|
95 | (1) |
|
3.2.3.2 Fixed Oxide Charge |
|
|
95 | (1) |
|
3.2.3.3 Oxide Trapped Charge |
|
|
95 | (1) |
|
3.2.3.4 Mobile Ionic Charge |
|
|
96 | (1) |
|
3.2.4 Effect of Oxide Charges on Energy Band Structure: Flat Band Voltage |
|
|
96 | (1) |
|
|
97 | (2) |
|
3.3 MOS Capacitor Under Applied Bias |
|
|
99 | (5) |
|
|
101 | (1) |
|
|
102 | (1) |
|
|
103 | (1) |
|
3.4 Multigate MOS Capacitor Systems: Mathematical Analysis |
|
|
104 | (24) |
|
|
105 | (3) |
|
3.4.2 Electrostatic Potentials and Charge Distribution |
|
|
108 | (1) |
|
3.4.2.1 Induced Charge in Semiconductor |
|
|
108 | (4) |
|
3.4.2.2 Formulation of Surface Potential |
|
|
112 | (6) |
|
3.4.2.3 Threshold Voltage |
|
|
118 | (4) |
|
3.4.2.4 Surface Potential Function |
|
|
122 | (3) |
|
3.4.2.5 Unified Expression for Inversion Charge Density |
|
|
125 | (3) |
|
3.5 Quantum Mechanical Effect |
|
|
128 | (2) |
|
|
130 | (1) |
|
|
130 | (3) |
|
Chapter 4 Overview of FinFET Device Technology |
|
|
133 | (18) |
|
|
133 | (1) |
|
4.2 FinFET Manufacturing Technology |
|
|
134 | (1) |
|
4.3 Bulk-FinFET Fabrication |
|
|
135 | (11) |
|
|
136 | (1) |
|
|
136 | (1) |
|
|
136 | (1) |
|
|
136 | (1) |
|
4.3.3 Fin Patterning: Spacer Etch Technique |
|
|
136 | (1) |
|
4.3.3.1 Mandrel Patterning |
|
|
137 | (1) |
|
4.3.3.2 Oxide Spacer Formation |
|
|
138 | (1) |
|
4.3.3.3 Silicon Fin Formation |
|
|
138 | (1) |
|
4.3.4 Alternative Well Formation Process |
|
|
139 | (1) |
|
4.3.5 Gate Definition: Polysilicon Dummy Gate Formation |
|
|
139 | (1) |
|
4.3.6 Source-Drain Extensions Processing |
|
|
140 | (1) |
|
4.3.6.1 nFinFET Source-Drain Extension Formation |
|
|
140 | (1) |
|
4.3.6.2 pFinFET Source-Drain Extension Formation |
|
|
140 | (1) |
|
4.3.7 Raised Source-Drain Processing |
|
|
141 | (1) |
|
4.3.7.1 SiGe pFinFET Raised Source-Drain Formation |
|
|
141 | (1) |
|
4.3.7.2 SiC <<FinFET Raised Source-Drain Formation |
|
|
142 | (1) |
|
4.3.7.3 Raised Source-Drain Silicidation |
|
|
142 | (1) |
|
4.3.8 Replacement Metal Gate Formation |
|
|
143 | (1) |
|
4.3.8.1 Polysilicon Dummy Gate Removal |
|
|
143 | (1) |
|
4.3.8.2 High-* Gate Dielectric Deposition |
|
|
144 | (1) |
|
4.3.8.3 Metal Gate Formation |
|
|
144 | (1) |
|
4.3.9 Self-Aligned Contact Formation |
|
|
144 | (1) |
|
|
145 | (1) |
|
4.4 SOI-FinFET Process Flow |
|
|
146 | (2) |
|
|
146 | (1) |
|
4.4.2 Fin Patterning: Spacer Etch Technique |
|
|
146 | (1) |
|
4.4.2.1 Mandrel Patterning |
|
|
146 | (1) |
|
4.4.2.2 Oxide Spacer Formation |
|
|
146 | (1) |
|
4.4.2.3 Silicon Fin Formation |
|
|
147 | (1) |
|
4.4.3 Comparison of Bulk-Silicon FinFET and SOI-FinFET Fabrication Technology |
|
|
147 | (1) |
|
|
148 | (1) |
|
|
148 | (3) |
|
Chapter 5 Large Geometry FinFET Device Operation |
|
|
151 | (32) |
|
|
151 | (1) |
|
5.2 Basic Features of FinFET Devices |
|
|
152 | (3) |
|
5.3 FinFET Device Operation |
|
|
155 | (1) |
|
5.4 Drain Current Formulation |
|
|
156 | (24) |
|
5.4.1 Derivation of Electrostatic Potential |
|
|
161 | (7) |
|
5.4.2 Continuous Drain Current Equation for Symmetric DG-FinFETs |
|
|
168 | (4) |
|
5.4.3 Regional Drain Current Formulation for Symmetric DG-FinFETs |
|
|
172 | (1) |
|
5.4.3.1 Threshold Voltage Formulation |
|
|
172 | (1) |
|
5.4.3.2 Linear Region lis Equation |
|
|
173 | (2) |
|
5.4.3.3 Saturation Region Iis Equation |
|
|
175 | (1) |
|
5.4.3.4 Subthreshold Conduction |
|
|
176 | (4) |
|
|
180 | (1) |
|
|
180 | (3) |
|
Chapter 6 Small Geometry FinFETs: Physical Effects on Device Performance |
|
|
183 | (32) |
|
|
183 | (1) |
|
6.2 Short-Channel Effects on Threshold Voltage |
|
|
183 | (9) |
|
6.2.1 Formulation of Natural Length |
|
|
184 | (6) |
|
|
190 | (2) |
|
6.2.3 Threshold Voltage Roll-Off |
|
|
192 | (1) |
|
6.2.4 DIBL Effect on Threshold Voltage |
|
|
192 | (1) |
|
6.3 Quantum Mechanical Effects |
|
|
192 | (7) |
|
|
193 | (2) |
|
6.3.2 QM Effect on Mobility |
|
|
195 | (1) |
|
6.3.3 QM Effect on Threshold Voltage |
|
|
195 | (3) |
|
6.3.4 QM Effect on Drain Current |
|
|
198 | (1) |
|
|
199 | (5) |
|
|
204 | (5) |
|
6.5.1 Velocity Saturation |
|
|
204 | (3) |
|
6.5.2 Channel Length Modulation |
|
|
207 | (2) |
|
|
209 | (2) |
|
|
211 | (1) |
|
|
211 | (4) |
|
Chapter 7 Leakage Currents in FinFETs |
|
|
215 | (16) |
|
|
215 | (1) |
|
7.2 Subthreshold Leakage Currents |
|
|
215 | (2) |
|
7.3 Gate-Induced Drain and Source Leakage Currents |
|
|
217 | (4) |
|
7.3.1 Formulation of Gate-Induced Drain Leakage Current |
|
|
218 | (3) |
|
7.3.2 Formulation of Gate-Induced Source Leakage Current |
|
|
221 | (1) |
|
7.4 Impact Ionization Current |
|
|
221 | (5) |
|
7.5 Source-Drain pn-Junction Leakage Current |
|
|
226 | (1) |
|
7.6 Gate Oxide Tunneling Leakage Currents |
|
|
226 | (1) |
|
|
227 | (1) |
|
|
228 | (3) |
|
Chapter 8 Parasitic Elements in FinFETs |
|
|
231 | (26) |
|
|
231 | (1) |
|
8.2 Source-Drain Parasitic Resistance |
|
|
232 | (14) |
|
8.2.1 Raised Source-Drain FinFET Structure |
|
|
232 | (2) |
|
8.2.2 Components of Source-Drain Series Resistance |
|
|
234 | (1) |
|
8.2.2.1 Contact Resistance |
|
|
235 | (2) |
|
8.2.2.2 Spreading Resistance |
|
|
237 | (3) |
|
8.2.2.3 Source-Drain Extension Resistance |
|
|
240 | (6) |
|
|
246 | (2) |
|
8.4 Parasitic Capacitance Elements |
|
|
248 | (3) |
|
8.4.1 Gate Overlap Capacitance |
|
|
248 | (1) |
|
|
249 | (1) |
|
8.4.2.1 Fin-to-Gate Fringe Capacitance |
|
|
250 | (1) |
|
8.4.2.2 Gate-to-Contact Fringe Capacitance |
|
|
250 | (1) |
|
8.5 Source-Drain pn-Junction Capacitance |
|
|
251 | (4) |
|
8.5.1 Reverse-Bias Capacitance |
|
|
252 | (2) |
|
8.5.2 Forward Bias Capacitance |
|
|
254 | (1) |
|
|
255 | (1) |
|
|
255 | (2) |
|
Chapter 9 Challenges to FinFET Process and Device Technology |
|
|
257 | (20) |
|
|
257 | (1) |
|
9.2 Process Technology Challenges |
|
|
257 | (8) |
|
9.2.1 Lithography Challenges |
|
|
257 | (1) |
|
9.2.1.1 ArF Lithography with Multi-Patterning |
|
|
258 | (1) |
|
9.2.1.2 Extreme Ultraviolet Lithography |
|
|
258 | (1) |
|
9.2.2 Process Integration Challenges |
|
|
259 | (1) |
|
9.2.2.1 Precise and Uniform Fin Patterning |
|
|
259 | (1) |
|
9.2.2.2 Gate and Spacer Patterning |
|
|
259 | (1) |
|
9.2.2.3 Uniform Junction Formation in Fin |
|
|
260 | (1) |
|
9.2.2.4 Stress Engineering |
|
|
260 | (1) |
|
9.2.2.5 High-k Dielectric and Metal Gate |
|
|
261 | (1) |
|
9.2.2.6 Variability Control |
|
|
262 | (1) |
|
9.2.2.7 Spatial Challenges |
|
|
262 | (1) |
|
9.2.3 Dopant Implantation Challenges |
|
|
263 | (1) |
|
|
263 | (1) |
|
|
263 | (1) |
|
9.2.4 The Etching Challenges |
|
|
264 | (1) |
|
9.2.4.1 Depth Loading Control of Fin Etching |
|
|
264 | (1) |
|
9.2.4.2 Gate Etch Control |
|
|
264 | (1) |
|
9.2.4.3 STI Process for Gate |
|
|
264 | (1) |
|
|
264 | (1) |
|
9.3 Device Technology Challenges |
|
|
265 | (6) |
|
9.3.1 Multiple Threshold Voltage Devices |
|
|
265 | (2) |
|
|
267 | (1) |
|
9.3.3 Crystal Orientation |
|
|
268 | (2) |
|
9.3.4 Source-Drain Series Resistance |
|
|
270 | (1) |
|
9.4 Challenges in FinFET Circuit Design |
|
|
271 | (1) |
|
|
271 | (1) |
|
|
272 | (5) |
|
Chapter 10 FinFET Compact Models for Circuit Simulation |
|
|
277 | (32) |
|
|
277 | (1) |
|
10.2 Compact Device Model |
|
|
277 | (2) |
|
10.3 Common Multiple-Gate Compact FinFET Model |
|
|
279 | (17) |
|
|
279 | (1) |
|
|
279 | (7) |
|
10.3.1.2 Drain Current Model |
|
|
286 | (2) |
|
10.3.2 Modeling Real Device Effects |
|
|
288 | (1) |
|
10.3.2.1 Short-Channel Effects |
|
|
288 | (3) |
|
10.3.2.2 Quantum Mechanical Effects |
|
|
291 | (3) |
|
10.3.2.3 Mobility Degradation |
|
|
294 | (1) |
|
10.3.2.4 Velocity Saturation |
|
|
295 | (1) |
|
10.3.2.5 Source-Drain Series Resistance |
|
|
295 | (1) |
|
|
296 | (2) |
|
10.4.1 Common Multigate C - V Model |
|
|
296 | (2) |
|
10.5 Threshold Voltage Variability |
|
|
298 | (8) |
|
|
306 | (1) |
|
|
306 | (3) |
Index |
|
309 | |