|
|
1 | (42) |
|
|
1 | (6) |
|
|
7 | (6) |
|
|
13 | (3) |
|
|
16 | (5) |
|
1.5 Equivalent Nodal Forces From the Skin Force |
|
|
21 | (4) |
|
1.6 Equilibrium from virtual work |
|
|
25 | (3) |
|
1.7 Transforming stiffness matrices |
|
|
28 | (2) |
|
1.8 "Inverting" a Rectangular Matrix |
|
|
30 | (3) |
|
|
33 | (5) |
|
|
38 | (1) |
|
|
39 | (4) |
|
|
41 | (2) |
|
|
43 | (22) |
|
|
43 | (7) |
|
|
50 | (2) |
|
|
52 | (8) |
|
|
60 | (2) |
|
|
62 | (3) |
|
|
63 | (2) |
|
3 2-D Llinear Interpolation |
|
|
65 | (16) |
|
3.1 Interpolants: "Unit at One Node and Zero at Others" |
|
|
65 | (1) |
|
3.2 Shape Functions: Exactly Interpolating Linear Fields |
|
|
66 | (5) |
|
3.3 Courant's Hand Calculation of Torsional Stiffness |
|
|
71 | (6) |
|
|
77 | (1) |
|
|
78 | (1) |
|
|
79 | (2) |
|
|
70 | (11) |
|
4 Clough's triangular elements |
|
|
81 | (22) |
|
4.1 Stiffness of elements |
|
|
82 | (8) |
|
4.2 Triangular Element System |
|
|
90 | (12) |
|
|
102 | (1) |
|
|
102 | (1) |
|
5 Taig's Convex Quadrilateral Elements |
|
|
103 | (18) |
|
|
105 | (1) |
|
|
106 | (2) |
|
5.3 Taig's Interpolants Mj in the Physical (x, y) Frame |
|
|
108 | (3) |
|
5.4 Uncoupling the Vector Displacement Field |
|
|
111 | (1) |
|
5.5 Derivation of Field Variables from Interpolants |
|
|
112 | (4) |
|
|
116 | (2) |
|
|
118 | (1) |
|
|
118 | (3) |
|
|
119 | (2) |
|
|
121 | (10) |
|
6.1 Patch Tests for Four-Node Plane Elements |
|
|
122 | (1) |
|
|
123 | (2) |
|
6.3 Modal Interpretation of the Patch Test |
|
|
125 | (2) |
|
6.4 Limitation of Conventional "Compatible" Formulations |
|
|
127 | (1) |
|
|
128 | (1) |
|
6.6 Computer Programming Assignment |
|
|
129 | (2) |
|
|
129 | (2) |
|
|
131 | (16) |
|
|
132 | (2) |
|
|
134 | (7) |
|
|
141 | (1) |
|
7.4 Numerics of Stiffness Matrix for Four Node Elements |
|
|
142 | (2) |
|
|
144 | (1) |
|
|
145 | (1) |
|
|
146 | (1) |
|
7.8 Computer Programming Assignment |
|
|
146 | (1) |
|
|
146 | (1) |
|
8 Incompressible Plane Strain Elements: Locking-Free in the x and y Directions |
|
|
147 | (28) |
|
8.1 Isochoric Displacement Modes |
|
|
148 | (6) |
|
|
154 | (4) |
|
8.3 A Pressure po: An Element Degree-of-Freedom |
|
|
158 | (3) |
|
|
161 | (9) |
|
|
170 | (2) |
|
|
172 | (1) |
|
|
172 | (1) |
|
|
172 | (3) |
|
|
173 | (2) |
|
|
175 | (30) |
|
9.1 Quadrilateral Elements |
|
|
176 | (8) |
|
|
184 | (4) |
|
|
188 | (1) |
|
|
189 | (4) |
|
|
193 | (1) |
|
9.6 Rayleigh--Ritz Procedure with Tensors: Patch on Book Cover |
|
|
194 | (4) |
|
|
198 | (1) |
|
|
199 | (2) |
|
|
201 | (4) |
|
|
202 | (3) |
|
|
205 | (16) |
|
|
206 | (4) |
|
|
210 | (5) |
|
|
215 | (1) |
|
|
216 | (5) |
|
|
219 | (2) |
|
|
221 | (40) |
|
B.1 Summary of Truss Elements |
|
|
221 | (8) |
|
|
229 | (6) |
|
|
235 | (9) |
|
|
244 | (15) |
|
B.5 Code Verification: Bells and Whistles |
|
|
259 | (1) |
|
|
259 | (1) |
|
B.7 Why This Chapter Is So Important |
|
|
259 | (2) |
|
|
260 | (1) |
|
|
261 | (6) |
|
|
262 | (2) |
|
|
264 | (3) |
|
|
265 | (2) |
|
|
267 | (8) |
|
|
267 | (3) |
|
|
270 | (2) |
|
D.3 FE for Linear Elasticity |
|
|
272 | (3) |
|
|
273 | (2) |
|
|
275 | (8) |
|
E.1 Gaussian Quadrature for Element-Level Integration |
|
|
275 | (2) |
|
|
277 | (1) |
|
E.3 Integration Within Polygons |
|
|
277 | (2) |
|
|
279 | (3) |
|
|
282 | (1) |
|
|
282 | (1) |
|
F Variational Formulation |
|
|
283 | (30) |
|
|
283 | (3) |
|
|
286 | (4) |
|
|
290 | (6) |
|
|
296 | (5) |
|
|
301 | (1) |
|
|
302 | (4) |
|
|
306 | (3) |
|
|
309 | (1) |
|
|
310 | (3) |
|
|
311 | (2) |
|
|
313 | (14) |
|
|
314 | (1) |
|
|
315 | (4) |
|
|
319 | (1) |
|
G.4 Singular Interpolants |
|
|
320 | (2) |
|
G.5 Comments on the Use of Mathematica |
|
|
322 | (2) |
|
|
324 | (3) |
|
|
326 | (1) |
Name Index |
|
327 | (2) |
Subject Index |
|
329 | (2) |
Roman Symbols |
|
331 | (2) |
Greek Symbols |
|
333 | |