|
1 An Overview of the Finite Element Method |
|
|
1 | (4) |
|
1.1 Features of the Finite Element Method |
|
|
2 | (1) |
|
|
3 | (2) |
|
|
5 | (20) |
|
2.1 Some Brief Mathematical Preliminaries |
|
|
5 | (1) |
|
2.2 A Model Differential Equation |
|
|
6 | (1) |
|
|
6 | (2) |
|
|
8 | (1) |
|
|
9 | (1) |
|
2.6 The Finite Element Solution |
|
|
10 | (1) |
|
2.7 Algebraic Equations Satisfied by the Finite Element Solution |
|
|
11 | (2) |
|
2.8 Assembling the Algebraic Equations |
|
|
13 | (4) |
|
2.8.1 Calculating the Local Contributions |
|
|
15 | (1) |
|
2.8.2 Assembling the Global Matrix |
|
|
16 | (1) |
|
2.9 A Summary of the Steps Required |
|
|
17 | (1) |
|
2.10 Computational Implementation |
|
|
17 | (2) |
|
2.11 Evaluating the Finite Element Solution at a Given Point |
|
|
19 | (1) |
|
2.12 Is the Finite Element Solution Correct? |
|
|
20 | (1) |
|
|
21 | (4) |
|
3 Linear Boundary Value Problems |
|
|
25 | (30) |
|
3.1 A General Boundary Value Problem |
|
|
25 | (2) |
|
3.1.1 A Note on the Existence and Uniqueness of Solutions |
|
|
26 | (1) |
|
|
27 | (3) |
|
|
27 | (1) |
|
3.2.2 Deriving the Weak Formulation |
|
|
28 | (2) |
|
3.3 The Finite Element Solution |
|
|
30 | (7) |
|
|
30 | (1) |
|
|
30 | (4) |
|
|
34 | (1) |
|
3.3.4 The Finite Element Solution |
|
|
34 | (1) |
|
3.3.5 The System of Algebraic Equations |
|
|
35 | (2) |
|
3.4 Assembling the Algebraic Equations |
|
|
37 | (3) |
|
3.4.1 The Contributions from Integrals |
|
|
37 | (2) |
|
3.4.2 Completing the Assembly of the Linear System |
|
|
39 | (1) |
|
3.5 Approximating Integrals Using Numerical Quadrature |
|
|
40 | (1) |
|
|
41 | (1) |
|
3.7 Computational Implementation |
|
|
42 | (3) |
|
3.8 Robin Boundary Conditions |
|
|
45 | (2) |
|
3.8.1 The Weak Formulation |
|
|
46 | (1) |
|
3.8.2 The Finite Element Solution |
|
|
47 | (1) |
|
3.9 A Bound on the Accuracy of the Solution |
|
|
47 | (2) |
|
|
49 | (6) |
|
4 Higher Order Basis Functions |
|
|
55 | (26) |
|
4.1 A Model Differential Equation |
|
|
55 | (1) |
|
4.2 Quadratic Basis Functions |
|
|
56 | (13) |
|
|
56 | (1) |
|
4.2.2 The Definition of Quadratic Basis Functions |
|
|
57 | (3) |
|
4.2.3 The Finite Element Solution |
|
|
60 | (1) |
|
4.2.4 The System of Algebraic Equations |
|
|
60 | (2) |
|
4.2.5 Assembling the Algebraic Equations |
|
|
62 | (3) |
|
4.2.6 Computational Implementation |
|
|
65 | (4) |
|
4.2.7 A Note on Using Quadrature for Higher Order Basis Functions |
|
|
69 | (1) |
|
4.3 Cubic Basis Functions |
|
|
69 | (6) |
|
|
70 | (1) |
|
4.3.2 The Definition of Cubic Basis Functions |
|
|
71 | (2) |
|
4.3.3 The Finite Element Solution |
|
|
73 | (1) |
|
4.3.4 Assembling the Algebraic Equations |
|
|
74 | (1) |
|
4.4 General Basis Functions |
|
|
75 | (3) |
|
|
76 | (1) |
|
|
76 | (1) |
|
4.4.3 The Finite Element Solution |
|
|
77 | (1) |
|
4.5 Convergence of the Finite Element Solution |
|
|
78 | (1) |
|
|
79 | (2) |
|
5 Nonlinear Boundary Value Problems |
|
|
81 | (22) |
|
|
81 | (16) |
|
5.1.1 The Weak Formulation |
|
|
82 | (1) |
|
5.1.2 The Mesh, Basis Functions and Finite Element Solution |
|
|
83 | (1) |
|
5.1.3 The Algebraic Equations |
|
|
83 | (2) |
|
5.1.4 Assembling the Algebraic Equations |
|
|
85 | (2) |
|
5.1.5 Computational Implementation |
|
|
87 | (3) |
|
5.1.6 Calculation of the Jacobian Matrix |
|
|
90 | (6) |
|
5.1.7 Numerical Approximation of the Jacobian Matrix |
|
|
96 | (1) |
|
5.2 A General Nonlinear Boundary Value Problem |
|
|
97 | (3) |
|
5.2.1 The Weak Formulation |
|
|
97 | (1) |
|
5.2.2 The Nonlinear System of Algebraic Equations |
|
|
98 | (2) |
|
|
100 | (3) |
|
6 Systems of Ordinary Differential Equations |
|
|
103 | (16) |
|
|
103 | (1) |
|
|
104 | (1) |
|
6.3 The Mesh and Basis Functions |
|
|
105 | (1) |
|
6.4 The Finite Element Solution |
|
|
106 | (1) |
|
6.5 The Algebraic Equations |
|
|
107 | (2) |
|
6.6 Assembling the Algebraic Equations |
|
|
109 | (1) |
|
6.7 Computational Implementation |
|
|
110 | (2) |
|
6.8 More General Linear Problems |
|
|
112 | (3) |
|
6.8.1 The Weak Formulation |
|
|
113 | (1) |
|
6.8.2 The Finite Element Solution |
|
|
114 | (1) |
|
|
115 | (2) |
|
|
117 | (2) |
|
7 Linear Elliptic Partial Differential Equations |
|
|
119 | (24) |
|
7.1 A First Model Problem |
|
|
119 | (1) |
|
|
120 | (2) |
|
7.2.1 Sobolev Spaces in Two Dimensions |
|
|
120 | (1) |
|
7.2.2 Deriving the Weak Formulation |
|
|
121 | (1) |
|
7.3 The Mesh and Basis Functions |
|
|
122 | (6) |
|
7.3.1 A Mesh of Triangular Elements |
|
|
122 | (3) |
|
7.3.2 Linear Basis Functions |
|
|
125 | (3) |
|
|
128 | (1) |
|
7.5 The Finite Element Solution |
|
|
129 | (1) |
|
7.6 The System of Algebraic Equations |
|
|
130 | (2) |
|
7.6.1 Satisfying the Dirichlet Boundary Conditions |
|
|
130 | (1) |
|
7.6.2 Using Suitable Test Functions |
|
|
130 | (1) |
|
|
131 | (1) |
|
7.7 Assembling the System of Algebraic Equations |
|
|
132 | (3) |
|
7.7.1 Assembling the Entries Defined by Integrals |
|
|
132 | (3) |
|
7.7.2 Setting the Entries Defined Explicitly |
|
|
135 | (1) |
|
7.8 Evaluating the Solution at a Given Point |
|
|
135 | (1) |
|
7.9 Computational Implementation |
|
|
136 | (3) |
|
7.10 More Complex Geometries |
|
|
139 | (1) |
|
|
140 | (3) |
|
8 More General Elliptic Problems |
|
|
143 | (18) |
|
|
143 | (1) |
|
|
144 | (1) |
|
8.3 The Mesh and Basis Functions |
|
|
145 | (1) |
|
8.4 The Finite Element Solution |
|
|
145 | (1) |
|
8.5 The Algebraic Equations |
|
|
145 | (2) |
|
8.5.1 Satisfying the Dirichlet Boundary Conditions |
|
|
146 | (1) |
|
8.5.2 Using Suitable Test Functions |
|
|
146 | (1) |
|
|
147 | (1) |
|
8.6 Assembling the Algebraic Equations |
|
|
147 | (4) |
|
8.6.1 Evaluating Integrals Over Ω |
|
|
148 | (1) |
|
8.6.2 Evaluating Integrals Over ∂ΩN |
|
|
149 | (1) |
|
8.6.3 Setting Entries Defined Explicitly |
|
|
150 | (1) |
|
8.7 Quadrature Over Triangles |
|
|
151 | (1) |
|
8.8 Computational Implementation |
|
|
152 | (6) |
|
|
158 | (3) |
|
|
161 | (14) |
|
|
161 | (1) |
|
|
162 | (1) |
|
9.3 The Computational Mesh |
|
|
162 | (2) |
|
|
164 | (2) |
|
|
166 | (1) |
|
9.6 The Finite Element Formulation |
|
|
166 | (1) |
|
9.7 The System of Algebraic Equations |
|
|
167 | (1) |
|
9.8 Assembling the System of Algebraic Equations |
|
|
168 | (3) |
|
9.8.1 Evaluating Integrals Over Ω |
|
|
169 | (2) |
|
9.8.2 Evaluating Integrals Over ΩN |
|
|
171 | (1) |
|
9.8.3 Setting Entries Defined Explicitly |
|
|
171 | (1) |
|
|
171 | (1) |
|
|
172 | (3) |
|
10 Higher Order Basis Functions |
|
|
175 | (14) |
|
10.1 The Model Boundary Value Problem and Weak Formulation |
|
|
175 | (1) |
|
10.2 Quadratic Basis Functions on a Mesh of Triangular Elements |
|
|
176 | (4) |
|
10.3 The Finite Element Solution |
|
|
180 | (1) |
|
10.4 The Algebraic Equations |
|
|
180 | (1) |
|
10.5 Assembling the Algebraic Equations |
|
|
181 | (3) |
|
10.5.1 Evaluating Integrals Over Ω |
|
|
181 | (2) |
|
10.5.2 Evaluating Integrals Over ΩN |
|
|
183 | (1) |
|
10.5.3 Setting Entries Defined Explicitly |
|
|
184 | (1) |
|
|
184 | (5) |
|
11 Nonlinear Elliptic Partial Differential Equations |
|
|
189 | (8) |
|
|
189 | (1) |
|
11.2 The Weak Formulation |
|
|
190 | (1) |
|
11.3 The Mesh and Basis Functions |
|
|
191 | (1) |
|
11.4 The Finite Element Solution |
|
|
191 | (1) |
|
11.5 The Nonlinear System of Algebraic Equations |
|
|
192 | (1) |
|
11.5.1 Satisfying the Dirichlet Boundary Conditions |
|
|
192 | (1) |
|
11.5.2 Using Suitable Test Functions |
|
|
192 | (1) |
|
11.6 Assembling the Nonlinear System of Algebraic Equations |
|
|
193 | (3) |
|
11.6.1 Evaluating Integrals Over Ω |
|
|
194 | (1) |
|
11.6.2 Evaluating Integrals Over ∂ΩN |
|
|
195 | (1) |
|
11.6.3 Setting Entries Defined Explicitly |
|
|
196 | (1) |
|
|
196 | (1) |
|
12 Systems of Elliptic Equations |
|
|
197 | (6) |
|
|
197 | (1) |
|
12.2 The Weak Formulation |
|
|
198 | (1) |
|
12.3 The Mesh and Basis Functions |
|
|
199 | (1) |
|
12.4 The Finite Element Solution |
|
|
199 | (1) |
|
12.5 The Algebraic Equations |
|
|
200 | (2) |
|
|
202 | (1) |
|
13 Parabolic Partial Differential Equations |
|
|
203 | (8) |
|
13.1 A Linear Parabolic Partial Differential Equation |
|
|
203 | (2) |
|
13.2 A Nonlinear Parabolic Equation |
|
|
205 | (2) |
|
13.3 A Semi-implicit Discretisation in Time |
|
|
207 | (1) |
|
|
208 | (3) |
Appendix A Methods for Solving Linear and Nonlinear Systems of Algebraic Equations |
|
211 | (16) |
Appendix B Vector Calculus |
|
227 | (2) |
Further Reading |
|
229 | (2) |
Index |
|
231 | |