|
Part I Elements of functional analysis |
|
|
|
|
3 | (12) |
|
|
3 | (1) |
|
|
4 | (3) |
|
|
7 | (1) |
|
|
8 | (7) |
|
2 Weak derivatives and Sobolev spaces |
|
|
15 | (12) |
|
|
15 | (3) |
|
|
18 | (3) |
|
2.3 Key properties: density and embedding |
|
|
21 | (6) |
|
3 Traces and Poincare inequalities |
|
|
27 | (12) |
|
3.1 Lipschitz sets and domains |
|
|
27 | (3) |
|
3.2 Traces as functions at the boundary |
|
|
30 | (4) |
|
3.3 Poincare--Steklov inequalities |
|
|
34 | (5) |
|
4 Distributions and duality in Sobolev spaces |
|
|
39 | (10) |
|
|
39 | (2) |
|
4.2 Negative-order Sobolev spaces |
|
|
41 | (2) |
|
4.3 Normal and tangential traces |
|
|
43 | (6) |
|
Part II Introduction to finite elements |
|
|
|
5 Main ideas and definitions |
|
|
49 | (10) |
|
|
49 | (1) |
|
5.2 Finite element as a triple |
|
|
50 | (2) |
|
5.3 Interpolation: finite element as a quadruple |
|
|
52 | (1) |
|
|
53 | (2) |
|
5.5 The Lebesgue constant |
|
|
55 | (4) |
|
6 One-dimensional finite elements and tensorization |
|
|
59 | (16) |
|
6.1 Legendre and Jacobi polynomials |
|
|
59 | (2) |
|
6.2 One-dimensional Gauss quadrature |
|
|
61 | (3) |
|
6.3 One-dimensional finite elements |
|
|
64 | (5) |
|
6.4 Multidimensional tensor-product elements |
|
|
69 | (6) |
|
7 Simplicial finite elements |
|
|
75 | (14) |
|
|
75 | (1) |
|
7.2 Barycentric coordinates, geometric mappings |
|
|
76 | (2) |
|
7.3 The polynomial space Pk,d |
|
|
78 | (1) |
|
7.4 Lagrange (nodal) finite elements |
|
|
78 | (4) |
|
7.5 Crouzeix-Raviart finite element |
|
|
82 | (1) |
|
7.6 Canonical hybrid finite element |
|
|
83 | (6) |
|
Part III Finite element interpolation |
|
|
|
|
89 | (12) |
|
8.1 The geometric mapping |
|
|
89 | (2) |
|
8.2 Main definitions related to meshes |
|
|
91 | (4) |
|
|
95 | (2) |
|
|
97 | (4) |
|
9 Finite element generation |
|
|
101 | (10) |
|
|
101 | (3) |
|
9.2 Differential calculus and geometry |
|
|
104 | (7) |
|
|
111 | (12) |
|
10.1 How to orient a mesh |
|
|
111 | (2) |
|
10.2 Generation-compatible orientation |
|
|
113 | (2) |
|
10.3 Increasing vertex-index enumeration |
|
|
115 | (1) |
|
|
116 | (2) |
|
10.5 Quadrangular and hexahedral meshes |
|
|
118 | (5) |
|
11 Local interpolation on affine meshes |
|
|
123 | (14) |
|
11.1 Shape-regularity for affine meshes |
|
|
123 | (3) |
|
11.2 Transformation of Sobolev seminorms |
|
|
126 | (1) |
|
11.3 Bramble-Hilbert lemmas |
|
|
127 | (2) |
|
11.4 Local finite element interpolation |
|
|
129 | (3) |
|
|
132 | (5) |
|
12 Local inverse and functional inequalities |
|
|
137 | (10) |
|
12.1 Inverse inequalities in cells |
|
|
137 | (3) |
|
12.2 Inverse inequalities on faces |
|
|
140 | (2) |
|
12.3 Functional inequalities in meshes |
|
|
142 | (5) |
|
13 Local interpolation on nonaffine meshes |
|
|
147 | (14) |
|
13.1 Introductory example on curved simplices |
|
|
147 | (1) |
|
13.2 A perturbation theory |
|
|
148 | (3) |
|
13.3 Interpolation error on nonaffine meshes |
|
|
151 | (4) |
|
|
155 | (1) |
|
|
156 | (2) |
|
13.6 Q2-curved quadrangles |
|
|
158 | (3) |
|
14 H(div) finite elements |
|
|
161 | (12) |
|
14.1 The lowest-order case |
|
|
161 | (2) |
|
14.2 The polynomial space RTk,d |
|
|
163 | (1) |
|
14.3 Simplicial Raviart-Thomas elements |
|
|
164 | (3) |
|
14.4 Generation of Raviart-Thomas elements |
|
|
167 | (2) |
|
14.5 Other H(div) finite elements |
|
|
169 | (4) |
|
15 //(curl) finite elements |
|
|
173 | (14) |
|
15.1 The lowest-order case |
|
|
173 | (3) |
|
15.2 The polynomial space Nk,d |
|
|
176 | (1) |
|
15.3 Simplicial Ncdelec elements |
|
|
177 | (5) |
|
15.4 Generation of Nedelec elements |
|
|
182 | (2) |
|
15.5 Other H(curl) finite elements |
|
|
184 | (3) |
|
16 Local interpolation in H(div) and H(curl) (I) |
|
|
187 | (12) |
|
16.1 Local interpolation in H(div) |
|
|
187 | (4) |
|
16.2 Local interpolation in H(curl) |
|
|
191 | (5) |
|
|
196 | (3) |
|
17 Local interpolation in H(div) and H(curl) (II) |
|
|
199 | (16) |
|
17.1 Face-to-cell lifting operator |
|
|
199 | (3) |
|
17.2 Local interpolation in H(div) using liftings |
|
|
202 | (4) |
|
17.3 Local interpolation in H(curl) using liftings |
|
|
206 | (9) |
|
Part IV Finite element spaces |
|
|
|
18 From broken to conforming spaces |
|
|
215 | (14) |
|
18.1 Broken spaces and jumps |
|
|
215 | (3) |
|
18.2 Conforming finite element subspaces |
|
|
218 | (4) |
|
18.3 L1'-stable local interpolation |
|
|
222 | (3) |
|
18.4 Broken L2-orthogonal projection |
|
|
225 | (4) |
|
19 Main properties of the conforming subspaces |
|
|
229 | (14) |
|
19.1 Global shape functions and dofs |
|
|
229 | (3) |
|
|
232 | (3) |
|
19.3 Global interpolation operators |
|
|
235 | (4) |
|
19.4 Subspaces with zero boundary trace |
|
|
239 | (4) |
|
|
243 | (14) |
|
20.1 The two gluing assumptions (Lagrange) |
|
|
243 | (2) |
|
20.2 Verification of the assumptions (Lagrange) |
|
|
245 | (4) |
|
20.3 Generalization of the two gluing assumptions |
|
|
249 | (2) |
|
20.4 Verification of the two gluing assumptions |
|
|
251 | (6) |
|
21 Construction of the connectivity classes |
|
|
257 | (16) |
|
21.1 Connectivity classes |
|
|
257 | (7) |
|
21.2 Verification of the assumptions |
|
|
264 | (1) |
|
21.3 Practical construction |
|
|
265 | (8) |
|
22 Quasi-interpolation and best approximation |
|
|
273 | (14) |
|
|
273 | (2) |
|
|
275 | (2) |
|
22.3 Quasi-interpolation operator |
|
|
277 | (3) |
|
22.4 Quasi-interpolation with zero trace |
|
|
280 | (3) |
|
22.5 Conforming L2-orthogonal projections |
|
|
283 | (4) |
|
23 Commuting quasi-interpolation |
|
|
287 | (16) |
|
23.1 Smoothing by mollification |
|
|
287 | (3) |
|
23.2 Mesh-dependent mollification |
|
|
290 | (2) |
|
23.3 L1 - stable commuting projection |
|
|
292 | (6) |
|
23.4 Mollification with extension by zero |
|
|
298 | (5) |
|
|
|
A Banach and Hilbert spaces |
|
|
303 | (6) |
|
|
303 | (1) |
|
A.2 Bounded linear maps and duality |
|
|
304 | (1) |
|
|
305 | (1) |
|
|
306 | (1) |
|
A.5 Interpolation between Banach spaces |
|
|
307 | (2) |
|
|
309 | (4) |
|
|
309 | (1) |
|
B.2 Vector and matrix representation |
|
|
310 | (3) |
References |
|
313 | (10) |
Index |
|
323 | |