Muutke küpsiste eelistusi

E-raamat: Finite Elements II: Galerkin Approximation, Elliptic and Mixed PDEs

  • Formaat: EPUB+DRM
  • Sari: Texts in Applied Mathematics 73
  • Ilmumisaeg: 22-Apr-2021
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030569235
  • Formaat - EPUB+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Texts in Applied Mathematics 73
  • Ilmumisaeg: 22-Apr-2021
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030569235

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is the second volume of a three-part textbook suitable for graduate coursework, professional engineering and academic research. It is also appropriate for graduate flipped classes. Each volume is divided into short chapters. Each chapter can be covered in one teaching unit and includes exercises as well as solutions available from a dedicated website. The salient ideas can be addressed during lecture, with the rest of the content assigned as reading material. To engage the reader, the text combines examples, basic ideas, rigorous proofs, and pointers to the literature to enhance scientific literacy.

Volume II is divided into 32 chapters plus one appendix. The first part of the volume focuses on the approximation of elliptic and mixed PDEs, beginning with fundamental results on well-posed weak formulations and their approximation by the Galerkin method. The material covered includes key results such as the BNB theorem based on inf-sup conditions, Céa's and Strang's lemmas, and the duality argument by Aubin and Nitsche. Important implementation aspects regarding quadratures, linear algebra, and assembling are also covered. The remainder of Volume II focuses on PDEs where a coercivity property is available. It investigates conforming and nonconforming approximation techniques (Galerkin, boundary penalty, CrouzeixRaviart, discontinuous Galerkin, hybrid high-order methods). These techniques are applied to elliptic PDEs (diffusion, elasticity, the Helmholtz problem, Maxwell's equations), eigenvalue problems for elliptic PDEs, and PDEs in mixed form (Darcy and Stokes flows).  Finally, the appendix addresses fundamental results on the surjectivity, bijectivity, and coercivity of linear operators in Banach spaces.
Part V Weak formulations and well-posedness
24 Weak formulation of model problems
3(10)
24.1 A second-order PDE
3(4)
24.2 A first-order PDE
7(3)
24.3 A complex-valued model problem
10(1)
24.4 Toward an abstract model problem
11(2)
25 Main results on well-posedness
13(14)
25.1 Mathematical setting
13(1)
25.2 Lax-Milgram lemma
14(3)
25.3 Banach-Necas-Babuska (BNB) theorem
17(3)
25.4 Two examples
20(7)
Part VI Galerkin approximation
26 Basic error analysis
27(14)
26.1 The Galerkin method
28(1)
26.2 Discrete well-posedness
28(4)
26.3 Basic error estimates
32(9)
27 Error analysis with variational crimes
41(14)
27.1 Setting
41(1)
27.2 Main results
42(4)
27.3 Two simple examples
46(3)
27.4 Strang's lemmas
49(6)
28 Linear algebra
55(16)
28.1 Stiffness and mass matrices
55(3)
28.2 Bounds on the stiffness and mass matrices
58(6)
28.3 Solution methods
64(7)
29 Sparse matrices
71(12)
29.1 Origin of sparsity
71(2)
29.2 Storage and assembling
73(2)
29.3 Reordering
75(8)
30 Quadratures
83(14)
30.1 Definition and examples
83(3)
30.2 Quadrature error
86(2)
30.3 Implementation
88(9)
Part VII Elliptic PDEs: conforming approximation
31 Scalar second-order elliptic PDEs
97(18)
31.1 Model problem
97(3)
31.2 Dirichlet boundary condition
100(3)
31.3 Robin/Neumann conditions
103(5)
31.4 Elliptic regularity
108(7)
32 Hx-conforming approximation (I)
115(10)
32.1 Continuous and discrete problems
115(2)
32.2 Error analysis and best approximation in H1
117(3)
32.3 L2-error analysis: the duality argument
120(3)
32.4 Elliptic projection
123(2)
33 H1-coiiforming approximation (II)
125(16)
33.1 Non-homogeneous Dirichlet conditions
125(6)
33.2 Discrete maximum principle
131(4)
33.3 Discrete problem with quadratures
135(6)
34 A posteriori error analysis
141(16)
34.1 The residual and its dual norm
141(4)
34.2 Global upper bound
145(3)
34.3 Local lower bound
148(4)
34.4 Adaptivity
152(5)
35 The Helmholtz problem
157(18)
35.1 Robin boundary conditions
157(7)
35.2 Mixed boundary conditions
164(2)
35.3 Dirichlet boundary conditions
166(1)
35.4 H1-conforming approximation
167(8)
Part VIII Elliptic PDEs: nonconforming approximation_
36 Crouzeix-Raviart approximation
175(16)
36.1 Model problem
175(1)
36.2 Crouzeix-Raviart discretization
176(7)
36.3 Error analysis
183(8)
37 Nitsche's boundary penalty method
191(8)
37.1 Main ideas and discrete problem
191(2)
37.2 Stability and well-posedness
193(1)
37.3 Error analysis
194(5)
38 Discontinuous Galerkin
199(14)
38.1 Model problem
199(1)
38.2 Symmetric interior penalty
200(4)
38.3 Error analysis
204(3)
38.4 Discrete gradient and fluxes
207(6)
39 Hybrid high-order method
213(16)
39.1 Local operators
213(6)
39.2 Discrete problem
219(5)
39.3 Error analysis
224(5)
40 Contrasted diffusivity (I)
229(10)
40.1 Model problem
229(2)
40.2 Discrete setting
231(1)
40.3 The bilinear form na
232(7)
41 Contrasted diffusivity (II)
239(14)
41.1 Continuous and discrete settings
239(2)
41.2 Crouzeix-Raviart approximation
241(2)
41.3 Nitsche's boundary penalty method
243(2)
41.4 Discontinuous Galerkin
245(2)
41.5 The hybrid high-order method
247(6)
Part IX Vector-valued elliptic PDEs
42 Linear elasticity
253(16)
42.1 Continuum mechanics
253(2)
42.2 Weak formulation and well-posedness
255(4)
42.3 H1-conforming approximation
259(3)
42.4 Further topics
262(7)
43 Maxwell's equations: H(curl)-approximation
269(10)
43.1 Maxwell's equations
269(3)
43.2 Weak formulation
272(3)
43.3 Approximation using edge elements
275(4)
44 Maxwell's equations: control on the divergence
279(12)
44.1 Functional setting
279(3)
44.2 Coercivity revisited for edge elements
282(4)
44.3 The duality argument for edge elements
286(5)
45 Maxwell's equations: further topics
291(14)
45.1 Model problem
291(1)
45.2 Boundary penalty method in ff(curl)
292(6)
45.3 Boundary penalty method in H1
298(1)
45.4 H1-approximation with divergence control
299(6)
Part X Eigenvalue problems
46 Symmetric elliptic eigenvalue problems
305(14)
46.1 Spectral theory
305(7)
46.2 Introductory examples
312(7)
47 Symmetric operators, conforming approximation
319(14)
47.1 Symmetric and coercive eigenvalue problems
319(4)
47.2 H1-conforming approximation
323(10)
48 Nonsymmetric problems
333(14)
48.1 Abstract theory
333(3)
48.2 Conforming approximation
336(4)
48.3 Nonconforming approximation
340(7)
Part XI PDEs in mixed form
49 Well-posedness for PDEs in mixed form
347(16)
49.1 Model problems
347(3)
49.2 Well-posedness in Hilbert spaces
350(4)
49.3 Saddle point problems in Hilbert spaces
354(2)
49.4 Babuska-Brezzi theorem
356(7)
50 Mixed finite element approximation
363(16)
50.1 Conforming Galerkin approximation
363(5)
50.2 Algebraic viewpoint
368(5)
50.3 Iterative solvers
373(6)
51 Darcy's equations
379(14)
51.1 Weak mixed formulation
379(6)
51.2 Primal, dual, and dual mixed formulations
385(1)
51.3 Approximation of the mixed formulation
386(7)
52 Potential and flux recovery
393(12)
52.1 Hybridization of mixed finite elements
393(5)
52.2 Flux recovery for H1-conforming elements
398(7)
53 Stokes equations: Basic ideas
405(16)
53.1 Incompressible fluid mechanics
405(2)
53.2 Weak formulation and well-posedness
407(5)
53.3 Conforming approximation
412(4)
53.4 Classical examples of unstable pairs
416(5)
54 Stokes equations: Stable pairs (I)
421(12)
54.1 Proving the inf-sup condition
421(3)
54.2 Mini element: the (Pi-bubble, Pi) pair
424(3)
54.3 Taylor-Hood element: the (P2,P1) pair
427(2)
54.4 Generalizations of the Taylor-Hood element
429(4)
55 Stokes equations: Stable pairs (II)
433(18)
55.1 Macroelement techniques
433(4)
55.2 Discontinuous pressures and bubbles
437(3)
55.3 Scott-Vogelius elements and generalizations
440(3)
55.4 Nonconforming and hybrid methods
443(3)
55.5 Stable pairs with Qk-based velocities
446(5)
Appendix
C Bijective operators in Banach spaces
451(20)
C.1 Injection, surjection, bijection
451(1)
C.2 Banach spaces
452(1)
C.3 Hilbert spaces
453(2)
C.4 Duality, reflexivity, and adjoint operators
455(3)
C.5 Open mapping and closed range theorems
458(2)
C.6 Characterization of surjectivity
460(5)
C.7 Characterization of bijectivity
465(2)
C.8 Coercive operators
467(4)
References 471(18)
Index 489
Alexandre Ern is Senior Researcher at Ecole des Ponts and INRIA in Paris, and he is also Associate Professor of Numerical Analysis at Ecole Polytechnique, Paris. His research deals with the devising and analysis of finite element methods and a posteriori error estimates and adaptivity with applications to fluid and solid mechanics and porous media flows. Alexandre Ern has co-authored three books and over 150 papers in peerreviewed journals. He has supervised about 20 PhD students and 10 postdoctoral fellows, and he has ongoing collaborations with several industrial partners. Jean-Luc Guermond is Professor of Mathematics at Texas A&M University where he also holds an Exxon Mobile Chair in Computational Science. His current research interests are in numerical analysis, applied mathematics, and scientific computing. He has co-authored two books and over 170 research papers in peer-reviewed journals.