Muutke küpsiste eelistusi

E-raamat: Finite Order Automorphisms and Real Forms of Affine Kac-Moody Algebras in the Smooth and Algebraic Category

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 76,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Let $\mathfrak{g}$ be a real or complex (finite dimensional) simple Lie algebra and $\sigma\in\mathrm{Aut}\mathfrak{g}$. The authors study automorphisms of the twisted loop algebra $L(\mathfrak{g},\sigma)$ of smooth $\sigma$-periodic maps from $\mathbb{R}$ to $\mathfrak{g}$ as well as of the ``smooth'' affine Kac-Moody algebra $\hat L(\mathfrak{g},\sigma)$, which is a $2$-dimensional extension of $L(\mathfrak{g},\sigma)$. It turns out that these automorphisms which either preserve or reverse the orientation of loops, and are correspondingly called to be of first and second kind, can be described essentially by curves of automorphisms of $\mathfrak{g}$. If the order of the automorphisms is finite, then the corresponding curves in $\mathrm{Aut}\mathfrak{g}$ allow us to define certain invariants and these turn out to parametrize the conjugacy classes of the automorphisms. If their order is $2$ the authors carry this out in detail and deduce a complete classification of involutions and real forms (which correspond to conjugate linear involutions) of smooth affine Kac-Moody algebras.

The resulting classification can be seen as an extension of Cartan's classification of symmetric spaces, i.e. of involutions on $\mathfrak{g}$. If $\mathfrak{g}$ is compact, then conjugate linear extensions of involutions from $\hat L(\mathfrak{g},\sigma)$ to conjugate linear involutions on $\hat L(\mathfrak{g}_{\mathbb{C}},\sigma_{\mathbb{C}})$ yield a bijection between their conjugacy classes and this gives existence and uniqueness of Cartan decompositions of real forms of complex smooth affine Kac-Moody algebras.

The authors show that their methods work equally well also in the algebraic case where the loops are assumed to have finite Fourier expansions.
Chapter 1 Introduction
1(6)
Chapter 2 Isomorphisms between smooth loop algebras
7(6)
Chapter 3 Isomorphisms of smooth affine Kac-Moody algebras
13(6)
Chapter 4 Automorphisms of the first kind of finite order
19(6)
Chapter 5 Automorphisms of the second kind of finite order
25(4)
Chapter 6 Involutions
29(8)
6.1 Involutions of the first kind
29(4)
6.2 Involutions of the second kind
33(4)
Chapter 7 Real forms
37(6)
Chapter 8 The algebraic case
43(12)
8.1 Preliminaries
43(1)
8.2 Isomorphisms between loop algebras
44(2)
8.3 Isomorphisms between affine Kac-Moody algebras
46(2)
8.4 Automorphisms of finite order
48(2)
8.5 Injectivity of Aut
50(4)
8.6 Real forms and Cartan decompositions
54(1)
Appendix A π0((Autg)Q) and representatives of its conjugacy classes 55(6)
Appendix B Conjugate linear automorphisms of g 61(2)
Appendix C Curves of automorphisms of finite order 63(2)
Bibliography 65
Ernst Heintze is at Universitat Augsburg, Germany.

||Christian Gross is at Universitat Augsburg, Germany.