Muutke küpsiste eelistusi

E-raamat: First Course in Computational Algebraic Geometry

(Technische Universität Kaiserslautern, Germany), (Technische Universität Kaiserslautern, Germany)
  • Formaat - EPUB+DRM
  • Hind: 18,51 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A First Course in Computational Algebraic Geometry is designed for young students with some background in algebra who wish to perform their first experiments in computational geometry. Originating from a course taught at the African Institute for Mathematical Sciences, the book gives a compact presentation of the basic theory, with particular emphasis on explicit computational examples using the freely available computer algebra system, Singular. Readers will quickly gain the confidence to begin performing their own experiments.

This quick guide is designed for young students with some background in algebra who wish to perform their first experiments in computational geometry. It provides a compact presentation of the basic theory, with particular emphasis on explicit computational examples using the computer algebra system Singular.

Arvustused

'Decker and Pfister exposit the very rudiments of algebraic geometry in tandem with the workings of the program Singular. The student who masters this content could proceed in many directions Recommended. Upper-division undergraduates through researchers/faculty.' D. V. Feldman, Choice

Muu info

A quick guide to computing in algebraic geometry with many explicit computational examples introducing the computer algebra system Singular.
Preface vii
Prologue: General Remarks on Computer Algebra Systems 1(10)
1 The Geometry-Algebra Dictionary
11(49)
1.1 Affine Algebraic Geometry
11(38)
1.1.1 Ideals in Polynomial Rings
11(3)
1.1.2 Affine Algebraic Sets
14(6)
1.1.3 Hilbert's Nullstellensatz
20(3)
1.1.4 Irreducible Algebraic Sets
23(2)
1.1.5 Removing Algebraic Sets
25(4)
1.1.6 Polynomial Maps
29(3)
1.1.7 The Geometry of Elimination
32(5)
1.1.8 Noether Normalization and Dimension
37(8)
1.1.9 Local Studies
45(4)
1.2 Projective Algebraic Geometry
49(11)
1.2.1 The Projective Space
49(3)
1.2.2 Projective Algebraic Sets
52(2)
1.2.3 Affine Charts and the Projective Closure
54(3)
1.2.4 The Hilbert Polynomial
57(3)
2 Computing
60(35)
2.1 Standard Bases and Singular
60(15)
2.2 Applications
75(9)
2.2.1 Ideal Membership
75(1)
2.2.2 Elimination
75(2)
2.2.3 Radical Membership
77(1)
2.2.4 Ideal Intersections
78(1)
2.2.5 Ideal Quotients
79(1)
2.2.6 Kernel of a Ring Map
79(1)
2.2.7 Integrality Criterion
80(2)
2.2.8 Noether Normalization
82(1)
2.2.9 Subalgebra Membership
83(1)
2.2.10 Homogenization
83(1)
2.3 Dimension and the Hilbert Function
84(6)
2.4 Primary Decomposition and Radicals
90(4)
2.5 Buchberger's Algorithm and Field Extensions
94(1)
3 Sudoku
95(6)
4 A Problem in Group Theory Solved by Computer Algebra
101(11)
4.1 Finite Groups and Thompson's Theorem
101(3)
4.2 Characterization of Finite Solvable Groups
104(8)
Bibliography 112(3)
Index 115
Wolfram Decker heads Singular's core development team within the Department of Mathematics at the University of Kaiserslautern, together with Gert-Martin Greuel, Gerhard Pfister and Hans Schönemann. He is also coordinator of the nationwide German Research Council Priority Programme 'Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory'. Gerhard Pfister heads Singular's core development team within the Department of Mathematics at the University of Kaiserslautern, together with Wolfram Decker, Gert-Martin Greuel and Hans Schönemann.