Muutke küpsiste eelistusi

E-raamat: First Course in Control System Design

  • Formaat - PDF+DRM
  • Hind: 98,80 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Control systems are pervasive in our lives. Our homes have environmental controls. Appliances we use at home such as the washing machine, microwave, etc. have embedded controllers. We fly in airplanes and drive automobiles, which make extensive use of control systems. The increase of automation in the past few decades has increased our reliance on control systems.

A First Course in Control System Design discusses control systems design from a model-based perspective as applicable to single-input single-output systems. The emphasis in this book is on understanding and applying the techniques that enable the design of effective control systems. The book covers the time-domain and the frequency-domain design methods as well as the design of continuous-time and discrete-time systems.

Technical topics discussed in the book include:
- Modeling of physical systems
- Analysis of transfer function and state variable models
- Control system design via root locus
- Control system design in the state-space
- Control design of sampled-data systems
- Compensator design via frequency response modification.

A First Course in Control System Design discusses control systems design from a model-based perspective as applicable to single-input single-output systems. The emphasis in this book is on understanding and applying the techniques that enable the design of effective control systems.



Control systems are pervasive in our lives. Our homes have environmental controls. The appliances we use at home, such as the washing machine, microwave, etc. have embedded controllers. We fly in airplanes and drive automobiles, which make extensive use of control systems. The increasing automation in the past few decades has increased our reliance on control systems.A First Course in Control System Design discusses control systems design from a model-based perspective as applicable to single-input single-output systems. The emphasis in this book is on understanding and applying the techniques that enable the design of effective control systems. The book covers the time-domain and the frequency-domain design methods, as well as the design of continuous-time and discrete-time systems.Technical topics discussed in the book include: Modeling of physical systems Analysis of transfer function and state variable models Control system design via root locus Control system design in the state-space Control design of sampled-data systems Compensator design via frequency response modification
Preface xi
Acknowledgement xvii
List of Figures
xix
List of Table
xxiii
List of Abbreviations
xxv
1 Physical System Models
1(16)
1.1 Physical Component Models
2(5)
1.1.1 First-Order Models
2(4)
1.1.2 Second-Order Models
6(1)
1.2 Transfer Function Models
7(4)
1.2.1 DC Motor Model
8(2)
1.2.2 Simplified Model a DC Motor
10(1)
1.2.3 Industrial Process Models
10(1)
1.3 State Variable Models
11(2)
1.4 Linearization of Nonlinear Models
13(4)
1.4.1 The General Nonlinear Case
14(1)
Skill Assessment Questions
15(2)
2 Analysis of Transfer Function Models
17(8)
2.1 System Poles and Zeros
17(1)
2.2 System Step Response
18(1)
2.2.1 Transient and Steady-State Components
19(1)
2.3 System Impulse Response
19(1)
2.4 BIBO Stability
20(1)
2.5 Sinusoidal Response of the System
21(4)
2.5.1 The Frequency Response Function
22(1)
Skill Assessment Questions
23(2)
3 Analysis of State Variable Models
25(12)
3.1 System Transfer Function
25(1)
3.2 Solution to the State Equations
26(1)
3.3 The State-Transition Matrix
27(2)
3.4 Linear Transformation of the State Variables
29(2)
3.5 State-Space Realization of Transfer Function Models
31(6)
3.5.1 Controller Form Realization
31(2)
3.5.2 Modal Form Realization
33(1)
3.5.3 Diagonal Form Realization
34(1)
Skill Assessment Questions
35(2)
4 Control System Design Objectives
37(12)
4.1 Stability of the Closed-Loop System
38(2)
4.1.1 The Hurwitz Criterion
38(1)
4.1.2 The Routh's Criterion
39(1)
4.2 System Transient Response
40(3)
4.2.1 Modes of System Response
40(1)
4.2.2 System Design Specifications
41(1)
4.2.3 Performance Indices
42(1)
4.3 System Steady-State Response
43(2)
4.3.1 Error Constants
44(1)
4.3.2 Steady-State Error to Ramp Input
44(1)
4.4 Disturbance Rejection
45(1)
4.5 Robustness
46(3)
Skill Assessment Questions
48(1)
5 Cascade Controller Models
49(8)
5.1 The Static Controller
49(1)
5.2 The Dynamic Controller
50(1)
5.3 The PID Controller
51(6)
5.3.1 Proportional--Derivative (PD)
51(1)
5.3.2 Proportional--Integral (PI)
52(1)
5.3.3 Proportional--Integral--Derivative (PID)
52(1)
5.3.4 PID Controller Tuning
53(2)
Skill Assessment Questions
55(2)
6 Control System Design with Root Locus
57(22)
6.1 The Root Locus
58(3)
6.1.1 Root Locus Rules
59(2)
6.2 Static Controller Design
61(2)
6.3 Controller Design Specifications
63(1)
6.4 Dynamic Controller Design
64(11)
6.4.1 Transient Response Improvement
64(3)
6.4.2 Steady-State Error Improvement
67(2)
6.4.3 Lead-Lag and PID Designs
69(2)
6.4.4 Rate Feedback Compensation
71(3)
6.4.5 Controller Design Comparison
74(1)
6.4.6 Controller Design with MATLAB SISO Tool
75(1)
6.5 Controller Realization
75(4)
6.5.1 Phase-Lead/Phase-Lag Compensators
76(1)
6.5.2 PD, PI, PID Compensators
76(1)
Skill Assessment Questions
77(2)
7 Sampled-Data Systems
79(16)
7.1 Models of Sampled-Data Systems
80(2)
7.1.1 Zero-Order Hold
82(1)
7.2 The Pulse Transfer Function
82(2)
7.2.1 Pulse Transfer Function in MATLAB
83(1)
7.3 Closed-Loop Sampled-Data Systems
84(4)
7.3.1 Step Response
84(3)
7.3.2 Steady-State Error
87(1)
7.4 Stability of Sampled-Data Systems
88(7)
7.4.1 Unit Pulse Response
88(1)
7.4.2 Schur--Cohn Stability Test
89(1)
7.4.3 The Jury's Test
90(1)
7.4.4 Stability through Bilinear Transform
91(2)
Skill Assessment Questions
93(2)
8 Digital Controller Design
95(12)
8.1 Controller Emulation
95(5)
8.1.1 Controller Emulation Using Impulse Invariance
96(1)
8.1.2 Controller Emulation Using Pole-Zero Matching
96(1)
8.1.3 Controller Emulation Using Bilinear Transform
97(1)
8.1.4 Controller Emulation Using ZOH
98(1)
8.1.5 Comparison of Controller Emulation Methods
98(2)
8.2 Emulation of Analog PID Controller
100(2)
8.3 Root Locus Design of Digital Controllers
102(5)
8.3.1 Design for a Desired Damping Ratio
102(2)
8.3.2 Settling Time and Damping Ratio
104(1)
Skill Assessment Questions
105(2)
9 Control System Design in State-Space
107(14)
9.1 Pole Placement with Full State Feedback
108(1)
9.1.1 Pole Placement in MATLAB
109(1)
9.2 Controller Form Pole Placement Design
109(4)
9.2.1 Linear Transformation to the Controller Form
111(2)
9.3 Tracking System Design
113(8)
9.3.1 Tracking PI Control
113(5)
Skill Assessment Questions
118(3)
10 Digital Controller Design in State-Space
121(10)
10.1 Sampled-Data Systems in State-Space
121(2)
10.2 Solution to the Discrete State Equations
123(2)
10.3 Pulse Transfer Function from the State Equations
125(1)
10.4 Digital Controller Design via Pole Placement
125(6)
10.4.1 Deadbeat Controller Design
127(2)
Skill Assessment Questions
129(2)
11 Compensator Design via Frequency Response Modification
131(22)
11.1 The Bode Plot
132(3)
11.1.1 Bode Plot of First Order Factors
132(1)
11.1.2 Bode Plot of Second Order Factors
133(1)
11.1.3 The Composite Bode Plot
134(1)
11.2 The Polar Plot
135(2)
11.3 Relative Stability
137(2)
11.3.1 Relative Stability on Frequency Response Plots
137(1)
11.3.2 Phase Margin and the Transient Response
138(1)
11.3.3 Sensitivity
139(1)
11.4 Frequency Response Design
139(11)
11.4.1 Gain Compensation
140(1)
11.4.2 Phase-Lag Compensation
141(2)
11.4.3 Phase-Lead Compensation
143(2)
11.4.4 Lead-Lag Compensation
145(2)
11.4.5 PI Compensator
147(1)
11.4.6 PD Compensator
148(1)
11.4.7 PID Compensator
148(2)
11.5 Closed-Loop Frequency Response
150(3)
11.5.1 The Nichol's Chart
150(2)
Skill Assessment Questions
152(1)
Appendix 153(4)
References 157(2)
Index 159(4)
About the Author 163
Kamran Iqbal