Muutke küpsiste eelistusi

E-raamat: First Course in Fractional Sobolev Spaces

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 112,71 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides a gentle introduction to fractional Sobolev spaces which play a central role in the calculus of variations, partial differential equations, and harmonic analysis. The first part deals with fractional Sobolev spaces of one variable. It covers the definition, standard properties, extensions, embeddings, Hardy inequalities, and interpolation inequalities.

The second part deals with fractional Sobolev spaces of several variables. The author studies completeness, density, homogeneous fractional Sobolev spaces, embeddings, necessary and sufficient conditions for extensions, Gagliardo-Nirenberg type interpolation inequalities, and trace theory. The third part explores some applications: interior regularity for the Poisson problem with the right-hand side in a fractional Sobolev space and some basic properties of the fractional Laplacian.

The first part of the book is accessible to advanced undergraduates with a strong background in integration theory; the second part, to graduate students having familiarity with measure and integration and some functional analysis. Basic knowledge of Sobolev spaces would help, but is not necessary. The book can also serve as a reference for mathematicians working in the calculus of variations and partial differential equations as well as for researchers in other disciplines with a solid mathematics background. It contains several exercises and is self-contained.
Fractional Sobolev spaces in one dimension: Fractional Sobolev spaces in
one dimension
Embeddings and interpolation
A bit of wavelets
Rearrangements
Higher order fractional Sobolev spaces in one dimension
Fractional Sobolev spaces: Fractional Sobolev spaces
Embeddings and interpolation
Further properties
Trace theory
Symmetrization
Higher order fractional Sobolev spaces
Some equivalent seminorms
Applications: Interior regularity for the Poisson problem
The fractional Laplacian
Bibliography
Index
Giovanni Leoni, Carnegie Mellon University, Pittsburgh, PA.