Muutke küpsiste eelistusi

E-raamat: First Course in Random Matrix Theory: for Physicists, Engineers and Data Scientists

  • Formaat: PDF+DRM
  • Ilmumisaeg: 03-Dec-2020
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108846837
  • Formaat - PDF+DRM
  • Hind: 71,62 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 03-Dec-2020
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108846837

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Classical statistical tools that handled real-life data have become inadequate upon the emergence of Big Data. Random matrix theory and free calculus introduced here present valuable solutions to the complex challenges posed by large datasets. Real world applications make it an essential tool for physicists, engineers, data analysts and economists.

The real world is perceived and broken down as data, models and algorithms in the eyes of physicists and engineers. Data is noisy by nature and classical statistical tools have so far been successful in dealing with relatively smaller levels of randomness. The recent emergence of Big Data and the required computing power to analyse them have rendered classical tools outdated and insufficient. Tools such as random matrix theory and the study of large sample covariance matrices can efficiently process these big data sets and help make sense of modern, deep learning algorithms. Presenting an introductory calculus course for random matrices, the book focusses on modern concepts in matrix theory, generalising the standard concept of probabilistic independence to non-commuting random variables. Concretely worked out examples and applications to financial engineering and portfolio construction make this unique book an essential tool for physicists, engineers, data analysts, and economists.

Muu info

An intuitive, up-to-date introduction to random matrix theory and free calculus, with real world illustrations and Big Data applications.
Preface ix
List of Symbols
xiv
Part I Classical Random Matrix Theory
1(108)
1 Deterministic Matrices
3(12)
1.1 Matrices, Eigenvalues and Singular Values
3(6)
1.2 Some Useful Theorems and Identities
9(6)
2 Wigner Ensemble and Semi-Circle Law
15(15)
2.1 Normalized Trace and Sample Averages
16(1)
2.2 The Wigner Ensemble
17(2)
2.3 Resolvent and Stieltjes Transform
19(11)
3 More on Gaussian Matrices
30(13)
3.1 Other Gaussian Ensembles
30(6)
3.2 Moments and Non-Crossing Pair Partitions
36(7)
4 Wishart Ensemble and Marcenko-Pastur Distribution
43(15)
4.1 Wishart Matrices
43(5)
4.2 Marcenko-Pastur Using the Cavity Method
48(10)
5 Joint Distribution of Eigenvalues
58(25)
5.1 From Matrix Elements to Eigenvalues
58(6)
5.2 Coulomb Gas and Maximum Likelihood Configurations
64(5)
5.3 Applications: Wigner, Wishart and the One-Cut Assumption
69(4)
5.4 Fluctuations Around the Most Likely Configuration
73(5)
5.5 An Eigenvalue Density Saddle Point
78(5)
6 Eigenvalues and Orthogonal Polynomials
83(14)
6.1 Wigner Matrices and Hermite Polynomials
83(4)
6.2 Laguerre Polynomials
87(4)
6.3 Unitary Ensembles
91(6)
7 The Jacobi Ensemble*
97(12)
7.1 Properties of Jacobi Matrices
97(5)
7.2 Jacobi Matrices and Jacobi Polynomials
102(7)
Part II Sums and Products of Random Matrices
109(132)
8 Addition of Random Variables and Brownian Motion
111(10)
8.1 Sums of Random Variables
111(1)
8.2 Stochastic Calculus
112(9)
9 Dyson Brownian Motion
121(15)
9.1 Dyson Brownian Motion I: Perturbation Theory
121(3)
9.2 Dyson Brownian Motion II: Ito Calculus
124(2)
9.3 The Dyson Brownian Motion for the Resolvent
126(3)
9.4 The Dyson Brownian Motion with a Potential
129(4)
9.5 Non-Intersecting Brownian Motions and the Karlin-McGregor Formula
133(3)
10 Addition of Large Random Matrices
136(19)
10.1 Adding a Large Wigner Matrix to an Arbitrary Matrix
136(4)
10.2 Generalization to Non-Wigner Matrices
140(2)
10.3 The Rank-1 hciz Integral
142(3)
10.4 Invertibility of the Stieltjes Transform
145(4)
10.5 The Full-Rank HCIZ Integral
149(6)
11 Free Probabilities
155(22)
11.1 Algebraic Probabilities: Some Definitions
155(1)
11.2 Addition of Commuting Variables
156(5)
11.3 Non-Commuting Variables
161(9)
11.4 Free Product
170(7)
12 Free Random Matrices
177(22)
12.1 Random Rotations and Freeness
177(4)
12.2 R-Transforms and Resummed Perturbation Theory
181(2)
12.3 The Central Limit Theorem for Matrices
183(3)
12.4 Finite Free Convolutions
186(7)
12.5 Freeness for 2 × 2 Matrices
193(6)
13 The Replica Method*
199(21)
13.1 Stieltjes Transform
200(4)
13.2 Resolvent Matrix
204(5)
13.3 Rank-1 hciz and Replicas
209(6)
13.4 Spin-Glasses, Replicas and Low-Rank hciz
215(5)
14 Edge Eigenvalues and Outliers
220(21)
14.1 The Tracy-Widom Regime
221(2)
14.2 Additive Low-Rank Perturbations
223(6)
14.3 Fat Tails
229(2)
14.4 Multiplicative Perturbation
231(3)
14.5 Phase Retrieval and Outliers
234(7)
Part III Applications
241(98)
15 Addition and Multiplication: Recipes and Examples
243(14)
15.1 Summary
243(2)
15.2 R- and S-Transforms and Moments of Useful Ensembles
245(4)
15.3 Worked-Out Examples: Addition
249(3)
15.4 Worked-Out Examples: Multiplication
252(5)
16 Products of Many Random Matrices
257(10)
16.1 Products of Many Free Matrices
257(4)
16.2 The Free Log-Normal
261(1)
16.3 A Multiplicative Dyson Brownian Motion
262(2)
16.4 The Matrix Kesten Problem
264(3)
17 Sample Covariance Matrices
267(14)
17.1 Spatial Correlations
267(4)
17.2 Temporal Correlations
271(5)
17.3 Time Dependent Variance
276(2)
17.4 Empirical Cross-Covariance Matrices
278(3)
18 Bayesian Estimation
281(16)
18.1 Bayesian Estimation
281(7)
18.2 Estimating a Vector: Ridge and LASSO
288(7)
18.3 Bayesian Estimation of the True Covariance Matrix
295(2)
19 Eigenvector Overlaps and Rotationally Invariant Estimators
297(24)
19.1 Eigenvector Overlaps
297(4)
19.2 Rotationally Invariant Estimators
301(8)
19.3 Properties of the Optimal RIE for Covariance Matrices
309(1)
19.4 Conditional Average in Free Probability
310(1)
19.5 Real Data
311(6)
19.6 Validation and RIE
317(4)
20 Applications to Finance
321(18)
20.1 Portfolio Theory
321(4)
20.2 The High-Dimensional Limit
325(5)
20.3 The Statistics of Price Changes: A Short Overview
330(4)
20.4 Empirical Covariance Matrices
334(5)
Appendix Mathematical Tools
339(8)
A.1 Saddle Point Method
339(2)
A.2 Tricomi's Formula
341(2)
A.3 Toeplitz and Circulant Matrices
343(4)
Index 347
Marc Potters is Chief Investment Officer of CFM, an investment firm based in Paris. Marc maintains strong links with academia and as an expert in Random Matrix Theory, he has taught at UCLA and Sorbonne University. He is co-author of Theory of Financial Risk and Derivative Pricing (Cambridge 2003). Jean-Philippe Bouchaud is a pioneer in Econophysics. His research includes random matrix theory, statistics of price formation, stock market fluctuations, and agent-based models for financial markets and macroeconomics. His previous books include Theory of Financial Risk and Derivative Pricing (Cambridge, 2003) and Trades, Quotes & Prices (Cambridge, 2018), and he has been the recipient of several prestigious, international awards.