Muutke küpsiste eelistusi

E-raamat: Fitting Smooth Functions to Data

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 78,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is an introductory text that charts the recent developments in the area of Whitney-type extension problems and the mathematical aspects of interpolation of data. It provides a detailed tour of a new and active area of mathematical research. In each section, the authors focus on a different key insight in the theory. The book motivates the more technical aspects of the theory through a set of illustrative examples. The results include the solution of Whitneys problem, an efficient algorithm for a finite version, and analogues for Hölder and Sobolev spaces in place of C m .

The target audience consists of graduate students and junior faculty in mathematics and computer science who are familiar with point set topology, as well as measure and integration theory. The book is based on lectures presented at the CBMS regional workshop held at the University of Texas at Austin in the summer of 2019.
Preface ix
Chapter 1 Overview 1(14)
1.1 Notation
1(1)
1.2 The Function Interpolation Problem
2(3)
1.3 Results for Cm Interpolation
5(3)
1.4 Results for Interpolation in Sobolev Spaces
8(1)
1.5 Results for Cm Extension
9(2)
1.6 Cm and Lipschitz Selection Problems
11(4)
Chapter 2 Whitney's Extension Theorem 15(16)
2.1 The Proof of Whitney's Extension Theorem
16(10)
2.2 The Well-Separated Pairs Decomposition
26(5)
Chapter 3 Cm Interpolation for Finite Data 31(42)
3.1 The Results
31(13)
3.2 The Basic Convex Sets
44(18)
3.3 Proof of the Stabilization Theorem for Cm
62(11)
Chapter 4 The Classical Whitney Extension Problem 73(26)
4.1 Proof of the Quantitative Main Theorem for Cm
82(17)
Chapter 5 Extension and Interpolation in Sobolev Spaces 99(36)
5.1 Sketch of Proofs
104(31)
Chapter 6 Vector-Valued Functions 135(16)
6.1 The Brenner-Epstein-Hochster-Kollar Problem
138(4)
6.2 Smooth Selection Problems
142(4)
6.3 Lipschitz Selection Problems
146(5)
Chapter 7 Open Problems 151(4)
7.1 (1 + epsilon)-Optimal Interpolation
151(1)
7.2 Interpolants of Minimal Norm
151(1)
7.3 Practical Algorithms
152(1)
7.4 Continuous Semialgebraic Sections
152(1)
7.5 Cm Semialgebraic Sections
152(1)
7.6 Sobolev Interpolation
152(1)
7.7 Computing Selections
153(1)
7.8 Interpolation with Constraints
153(1)
7.9 Sobolev Extension Domains
154(1)
7.10 Cinfinity extension
154(1)
7.11 Fitting a Manifold to Data
154(1)
Bibliography 155(4)
Index 159
Charles Fefferman, Princeton University, NJ, and Arie Israel, University of Texas at Austin, TX