Muutke küpsiste eelistusi

E-raamat: Fixed Point of the Parabolic Renormalization Operator

  • Formaat: PDF+DRM
  • Sari: SpringerBriefs in Mathematics
  • Ilmumisaeg: 01-Nov-2014
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319117072
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: SpringerBriefs in Mathematics
  • Ilmumisaeg: 01-Nov-2014
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319117072

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This monograph grew out of the authors" efforts to provide a natural geometric description for the class of maps invariant under parabolic renormalization and for the Inou-Shishikura fixed point itself as well as to carry out a computer-assisted study of the parabolic renormalization operator. It introduces a renormalization-invariant class of analytic maps with a maximal domain of analyticity and rigid covering properties and presents a numerical scheme for computing parabolic renormalization of a germ, which is used to compute the Inou-Shishikura renormalization fixed point.Inside, readers will find a detailed introduction into the theory of parabolic bifurcation, Fatou coordinates, Écalle-Voronin conjugacy invariants of parabolic germs, and the definition and basic properties of parabolic renormalization.The systematic view of parabolic renormalization developed in the book and the numerical approach to its study will be interesting to both experts in the field as well as g

raduate students wishing to explore one of the frontiers of modern complex dynamics.

1 Introduction.- 2 Local dynamics of a parabolic germ.- 3 Global theory.- 4 Numerical results.- 5 For dessert: several amusing examples.- Index.

Michael Yampolsky is an expert in Dynamical Systems, particularly in Holomorphic Dynamics and Renormalization Theory.

Arvustused

The book under review is devoted to the study of parabolic renormalization. The book is very well written and self-contained and most results are stated together with their proofs. (Jasmin Raissy, zbMATH 1342.37051, 2016)

1 Introduction
1(4)
2 Local Dynamics of a Parabolic Germ
5(40)
2.1 Fatou Coordinates
5(14)
2.2 Asymptotic Expansion of a Fatou Coordinate at Infinity
19(10)
2.2.1 A Note on Resurgent Properties of the Asymptotic Expansion of the Fatou Coordinates
26(3)
2.3 Ecalle-Voronin Invariants and Definition of Parabolic Renormalization
29(7)
2.4 Analytic Continuation of Parabolic Renormalization
36(9)
3 Global Theory
45(50)
3.1 Basic Facts About Branched Coverings
45(2)
3.2 Parabolic Renormalization of the Quadratic Map
47(10)
3.2.1 The Julia Set of f0(z) = Z + z2 Is a Jordan Curve
48(9)
3.3 Covering Properties of the Ecalle-Voronin Invariant of f0
57(13)
3.4 Parabolic Renormalization of f0
70(1)
3.4.1 A Note on the General Theory for Analytic Maps of Finite Type
71(1)
3.5 A Class of Analytic Mappings Invariant Under P
71(5)
3.5.1 Definition of P0
71(5)
3.6 The Structure of the Immediate Parabolic Basin of a Map in P
76(16)
3.6.1 Definition of P1 and Puzzle Partitions
81(5)
3.6.2 The Immediate Basin of a Map in P1 Is a Jordan Domain
86(6)
3.7 Convergence of Parabolic Renormalization
92(3)
4 Numerical Results
95(10)
4.1 A Computational Scheme for P
95(4)
4.1.1 Computing f*
98(1)
4.2 Computing the Domain of Analyticity of f*
99(6)
4.2.1 Computing the Tail of the Domain Dom (f*)
99(6)
5 For Dessert: Several Amusing Examples
105(4)
5.1 Example of a Map with a Simply-Connected Parabolic Basin Whose Boundary Is Not Locally Connected
105(2)
5.2 Example of a Map in P\P0
107(2)
References 109(2)
Index 111