Muutke küpsiste eelistusi

E-raamat: Flexible Thermoelectric Polymers and Systems

Edited by
  • Formaat: PDF+DRM
  • Ilmumisaeg: 13-Jan-2022
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119550686
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 154,31 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 13-Jan-2022
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119550686
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Thermoelectric materials are important for the sustainable development of human beings because they can be used to directly convert heat into electricity. There is an abundance of low-grade heat and exhaust heat on earth, but they are usually dissipatedto the environment as waste. Thermoelectric materials can be used as the active materials of thermoelectric generators and Peltier coolers. Conventionally, inorganic semiconductors or semimetals had shown high thermoelectric performance. However, they have problems such as poor mechanical flexibility, scarce abundant elements, high fabrication cost, and toxicity. Great progress has been made on flexible thermoelectric materials including polymers and polymer composites"--

Flexible Thermoelectric Polymers and Systems

Comprehensive review of the rapidly evolving field of flexible thermoelectric polymers

Flexible Thermoelectric Polymers and Systems delivers an expansive exploration of the most recent developments in flexible thermoelectric polymers and composites, as well as their applications in thermoelectric generators and Peltier coolers. The book focuses on novel designs and applications of technologies such as low-dimensional thermoelectric materials and how the latest advances have begun to overcome problems including poor mechanical flexibility and high fabrication costs.

The book begins with a review of the fundamentals of thermoelectric materials, including discussions of the properties of thermoelectric materials, the Seebeck, Peltier, and Thomson effects, electrical conductivity, thermal conductivity, and thermoelectric generators, cooling, and sensors. It goes on to discuss more advanced developments in the field, such as flexible thermoelectric plastics and the thermoelectric properties of conducting polymers with ionic conductors.

The book also includes:

  • Thorough introductions to thermoelectric materials and systems, as well as the chemistry and physics of intrinsically conductive polymers
  • Comprehensive explorations of thermoelectric PEDOTs, p-type thermoelectric polymers, and N-type thermoelectric polymers
  • Practical discussions of thermoelectric composites of carbon nanotubes, graphene, and nanomaterials
  • In-depth examinations of polymer composites of inorganic thermoelectric semiconductors

Perfect for academic and industrial researchers and engineers in physics, materials science, chemistry, and engineering, Flexible Thermoelectric Polymers and Systems is also an indispensable resource for graduate students and early-career professionals working in those fields.

List of Contributors
ix
Preface xiii
1 Fundamental Knowledge on Thermoelectric Materials
1(40)
Jianyong Ouyang
Hanlin Cheng
1.1 Properties of Thermoelectric Materials
1(23)
1.1.1 Thermoelectric Effect
3(1)
1.1.2 Seebeck Effect
3(8)
1.1.3 Peltier Effect
11(1)
1.1.4 Thomson Effect
11(1)
1.1.5 Electrical Conductivity
12(1)
1.1.5.1 Charge Carrier Density
12(3)
1.1.5.2 Charge Carrier Mobility
15(2)
1.1.5.3 Temperature Dependence of Conductivity
17(3)
1.1.5.4 Conductivity of Composites
20(2)
1.1.6 Thermal Conductivity
22(2)
1.2 Thermoelectric Generators
24(11)
1.2.1 Dependence of Thermoelectric Efficiency on ZT
24(1)
1.2.2 Effect of Electrical and Thermal Contact Resistances On Thermoelectric Performance
25(2)
1.2.3 Equation of Thermoelectric Efficiency
27(8)
1.3 Peltier Cooling
35(2)
1.4 Thermoelectric Sensors
37(1)
1.5 Summary
37(4)
Acknowledgment
38(1)
References
38(3)
2 Conductive Polymers for Flexible Thermoelectric Systems
41(30)
Lin Hu
Zaifang Li
Yinhua Zhou
Fengling Zhang
2.1 Introduction
41(7)
2.1.1 The Discovery and Development of Conductive Polymers
42(1)
2.1.2 Representative Structures
43(1)
2.1.2.1 Polyacetylene (PAc)
44(1)
2.1.2.2 Polyaniline (PAni)
44(1)
2.1.2.3 Polypyrrole (PPy)
45(1)
2.1.2.4 Polythiophene (PTh) and Derivatives
46(1)
2.1.3 Conductive Mechanism
47(1)
2.2 Chemical Design and Synthesis of Conductive Polymers
48(4)
2.2.1 Energy Level Design of Conjugated Polymers
48(3)
2.2.2 Tuning Molecular Conformations
51(1)
2.2.3 Melt and Solution Processability
51(1)
2.3 Doping of Conductive Polymers
52(5)
2.3.1 n-Type Doping
54(1)
2.3.2 p-Type Doping
55(2)
2.4 The Properties of Poly(3,4-ethylenedioxythiophene)
57(8)
2.4.1 Oxidative and in situ Polymerization of EDOT to PEDOT
57(1)
2.4.2 Counterions for PEDOT
58(1)
2.4.3 PEDOT: PSS
59(3)
2.4.4 Applications in Organic Electronics
62(1)
2.4.4.1 As an Electrode in Organic Solar Cells
62(2)
2.4.4.2 Buffer Layer in Organic Solar Cells
64(1)
2.4.4.3 Polymer-Based Organic Thermoelectric Generators
64(1)
2.5 Processing Technics for Flexible Thermoelectric Generators
65(4)
2.6 Conclusions and Perspectives
69(2)
Acknowledgments
69(1)
References
70(1)
3 Flexible Thermoelectrics Based on Poly(3,4-Ethylenedioxythiophene)
71(46)
Ming Hui Chua
Ady Suwardi
Jianwei Xu
3.1 Introduction
81(2)
3.2 TE Materials and Devices
83(9)
3.2.1 Fundamental Principles and Theory of Thermoelectrics
83(2)
3.2.2 PEDOT and Its Composites as TE Materials
85(3)
3.2.3 General Configuration of TE Devices and Generators
88(2)
3.2.4 Parameters of TE Device and Generator Performances
90(1)
3.2.4.1 Output Voltage
90(1)
3.2.4.2 Output Power Density
91(1)
3.3 PEDOT-Based Flexible TE Materials
92(7)
3.4 PEDOT: PSS-Based TEGs
99(11)
3.5 Conclusions and Perspectives
110(7)
Acknowledgments
111(1)
Conflict of Interests
112(1)
References
112(5)
4 Flexible Thermoelectric Plastic Via Electrochemistry
117(28)
Fengxing Jiang
Peipei Liu
Baoyang Lu
Congcong Liu
Jingkun Xu
4.1 Introduction
117(1)
4.2 Electrochemical Deposition of CPs
118(7)
4.3 Electronic Structure and Optical Properties
125(5)
4.4 Electrochemical Doping and De-doping
130(3)
4.5 Thermoelectric Performance of Flexible CP Films
133(5)
4.5.1 Polythiophenes
133(2)
4.5.2 Polyselenophenes
135(1)
4.5.3 Polycarbazolyls
136(1)
4.5.4 Copolymers
137(1)
4.6 Control in Thermoelectric Performance by Electrochemistry
138(2)
4.7 Conclusions
140(5)
Acknowledgments
142(1)
References
142(3)
5 Thermoelectric Properties of Conducting Polymers with Ionic Conductors
145(18)
Zeng Fan
Jianyong Ouyang
Lujun Pan
5.1 Introduction
145(1)
5.2 Mixed Ionic-Electronic Conductors
146(4)
5.3 Ionic Conductor/Conducting Polymer Heterostructures
150(4)
5.4 High-Performance Ion-Conducting TE Polymers
154(4)
5.5 Applications of Electronic-Ionic Coupled TE Organics
158(3)
5.5.1 TE Generators
158(1)
5.5.2 Ionic TE Capacitors
159(1)
5.5.3 Multifunctional Sensors
160(1)
5.6 Summary
161(2)
Acknowledgments
161(1)
References
161(2)
6 Thermoelectric Properties of Carbon Nanomaterials/PoLymer Composites
163(46)
Yue Shu
Zhenghong Xiong
Yang Liu
Yongli Zhou
Meng Li
Yujie Zheng
Shanshan Chen
Kuan Sun
6.1 Introduction
163(1)
6.2 Conducting Polymers
164(24)
6.2.1 PEDOT: PSS
165(1)
6.2.1.1 CNT/PEDOT: PSS
165(6)
6.2.1.2 Graphene/PEDOT: PSS
171(2)
6.2.2 Polyaniline (PANI)
173(1)
6.2.2.1 Powder Mixing Method
174(4)
6.2.2.2 Solution Mixing Method
178(2)
6.2.2.3 In Situ Polymerization Method
180(4)
6.2.2.4 Layer-by-Layer (LBL) Deposition
184(1)
6.2.3 Polypyrrole (PPy)
184(2)
6.2.4 Other P-Type Conducting Polymers
186(1)
6.2.5 N-Type TE Composites
187(1)
6.3 Non-Conducting Polymers
188(6)
6.3.1 Wrap
190(1)
6.3.2 Layer-by-Layer Deposition
191(2)
6.3.3 Segregated Network
193(1)
6.4 Ternary Thermoelectric Material
194(4)
6.4.1 Non-conducting Polymer
194(1)
6.4.2 Conducting Polymer
195(3)
6.5 Summary and Outlook
198(11)
References
199(10)
7 Low-dimensional Thermoelectric Materials
209(30)
Xinyi Chen
Yuanyuan Zheng
Xue Han
Yuanyuan Ling
Minzhi Du
Chunhong Lu
Kun Zhang
7.1 Introduction
209(1)
7.2 Zero-Dimensional (OD) Inorganic Semiconducting Nanocrystals
209(5)
7.2.1 Measurements
210(1)
7.2.2 Materials and Properties
211(1)
7.2.2.1 Fullerene
211(2)
7.2.2.2 Graphene Quantum Dots
213(1)
7.3 One-Dimensional (ID) Thermoelectric Materials
214(8)
7.3.1 ID Organic Thermoelectric Materials
214(1)
7.3.1.1 Poly(3,4-Ethylenedioxythiophene) Nanowires
214(3)
7.3.1.2 Other Polymer Nanowires
217(2)
7.3.2 Carbon Nanotubes
219(3)
7.4 Two-Dimensional (2D) Thermoelectric Materials
222(17)
7.4.1 Graphene
223(3)
7.4.2 Black Phosphorus
226(3)
7.4.3 Mxenes
229(4)
References
233(6)
Index 239
Jianyong Ouyang, PhD, is Associate Professor at the National University of Singapore. He received his doctorate from the Institute for Molecular Science in Japan and his research focuses on flexible electronics and energy materials and devices.