|
|
ix | |
Preface |
|
xiii | |
|
1 Fundamental Knowledge on Thermoelectric Materials |
|
|
1 | (40) |
|
|
|
1.1 Properties of Thermoelectric Materials |
|
|
1 | (23) |
|
1.1.1 Thermoelectric Effect |
|
|
3 | (1) |
|
|
3 | (8) |
|
|
11 | (1) |
|
|
11 | (1) |
|
1.1.5 Electrical Conductivity |
|
|
12 | (1) |
|
1.1.5.1 Charge Carrier Density |
|
|
12 | (3) |
|
1.1.5.2 Charge Carrier Mobility |
|
|
15 | (2) |
|
1.1.5.3 Temperature Dependence of Conductivity |
|
|
17 | (3) |
|
1.1.5.4 Conductivity of Composites |
|
|
20 | (2) |
|
1.1.6 Thermal Conductivity |
|
|
22 | (2) |
|
1.2 Thermoelectric Generators |
|
|
24 | (11) |
|
1.2.1 Dependence of Thermoelectric Efficiency on ZT |
|
|
24 | (1) |
|
1.2.2 Effect of Electrical and Thermal Contact Resistances On Thermoelectric Performance |
|
|
25 | (2) |
|
1.2.3 Equation of Thermoelectric Efficiency |
|
|
27 | (8) |
|
|
35 | (2) |
|
1.4 Thermoelectric Sensors |
|
|
37 | (1) |
|
|
37 | (4) |
|
|
38 | (1) |
|
|
38 | (3) |
|
2 Conductive Polymers for Flexible Thermoelectric Systems |
|
|
41 | (30) |
|
|
|
|
|
|
41 | (7) |
|
2.1.1 The Discovery and Development of Conductive Polymers |
|
|
42 | (1) |
|
2.1.2 Representative Structures |
|
|
43 | (1) |
|
2.1.2.1 Polyacetylene (PAc) |
|
|
44 | (1) |
|
2.1.2.2 Polyaniline (PAni) |
|
|
44 | (1) |
|
2.1.2.3 Polypyrrole (PPy) |
|
|
45 | (1) |
|
2.1.2.4 Polythiophene (PTh) and Derivatives |
|
|
46 | (1) |
|
2.1.3 Conductive Mechanism |
|
|
47 | (1) |
|
2.2 Chemical Design and Synthesis of Conductive Polymers |
|
|
48 | (4) |
|
2.2.1 Energy Level Design of Conjugated Polymers |
|
|
48 | (3) |
|
2.2.2 Tuning Molecular Conformations |
|
|
51 | (1) |
|
2.2.3 Melt and Solution Processability |
|
|
51 | (1) |
|
2.3 Doping of Conductive Polymers |
|
|
52 | (5) |
|
|
54 | (1) |
|
|
55 | (2) |
|
2.4 The Properties of Poly(3,4-ethylenedioxythiophene) |
|
|
57 | (8) |
|
2.4.1 Oxidative and in situ Polymerization of EDOT to PEDOT |
|
|
57 | (1) |
|
2.4.2 Counterions for PEDOT |
|
|
58 | (1) |
|
|
59 | (3) |
|
2.4.4 Applications in Organic Electronics |
|
|
62 | (1) |
|
2.4.4.1 As an Electrode in Organic Solar Cells |
|
|
62 | (2) |
|
2.4.4.2 Buffer Layer in Organic Solar Cells |
|
|
64 | (1) |
|
2.4.4.3 Polymer-Based Organic Thermoelectric Generators |
|
|
64 | (1) |
|
2.5 Processing Technics for Flexible Thermoelectric Generators |
|
|
65 | (4) |
|
2.6 Conclusions and Perspectives |
|
|
69 | (2) |
|
|
69 | (1) |
|
|
70 | (1) |
|
3 Flexible Thermoelectrics Based on Poly(3,4-Ethylenedioxythiophene) |
|
|
71 | (46) |
|
|
|
|
|
81 | (2) |
|
3.2 TE Materials and Devices |
|
|
83 | (9) |
|
3.2.1 Fundamental Principles and Theory of Thermoelectrics |
|
|
83 | (2) |
|
3.2.2 PEDOT and Its Composites as TE Materials |
|
|
85 | (3) |
|
3.2.3 General Configuration of TE Devices and Generators |
|
|
88 | (2) |
|
3.2.4 Parameters of TE Device and Generator Performances |
|
|
90 | (1) |
|
|
90 | (1) |
|
3.2.4.2 Output Power Density |
|
|
91 | (1) |
|
3.3 PEDOT-Based Flexible TE Materials |
|
|
92 | (7) |
|
3.4 PEDOT: PSS-Based TEGs |
|
|
99 | (11) |
|
3.5 Conclusions and Perspectives |
|
|
110 | (7) |
|
|
111 | (1) |
|
|
112 | (1) |
|
|
112 | (5) |
|
4 Flexible Thermoelectric Plastic Via Electrochemistry |
|
|
117 | (28) |
|
|
|
|
|
|
|
117 | (1) |
|
4.2 Electrochemical Deposition of CPs |
|
|
118 | (7) |
|
4.3 Electronic Structure and Optical Properties |
|
|
125 | (5) |
|
4.4 Electrochemical Doping and De-doping |
|
|
130 | (3) |
|
4.5 Thermoelectric Performance of Flexible CP Films |
|
|
133 | (5) |
|
|
133 | (2) |
|
|
135 | (1) |
|
|
136 | (1) |
|
|
137 | (1) |
|
4.6 Control in Thermoelectric Performance by Electrochemistry |
|
|
138 | (2) |
|
|
140 | (5) |
|
|
142 | (1) |
|
|
142 | (3) |
|
5 Thermoelectric Properties of Conducting Polymers with Ionic Conductors |
|
|
145 | (18) |
|
|
|
|
|
145 | (1) |
|
5.2 Mixed Ionic-Electronic Conductors |
|
|
146 | (4) |
|
5.3 Ionic Conductor/Conducting Polymer Heterostructures |
|
|
150 | (4) |
|
5.4 High-Performance Ion-Conducting TE Polymers |
|
|
154 | (4) |
|
5.5 Applications of Electronic-Ionic Coupled TE Organics |
|
|
158 | (3) |
|
|
158 | (1) |
|
5.5.2 Ionic TE Capacitors |
|
|
159 | (1) |
|
5.5.3 Multifunctional Sensors |
|
|
160 | (1) |
|
|
161 | (2) |
|
|
161 | (1) |
|
|
161 | (2) |
|
6 Thermoelectric Properties of Carbon Nanomaterials/PoLymer Composites |
|
|
163 | (46) |
|
|
|
|
|
|
|
|
|
|
163 | (1) |
|
|
164 | (24) |
|
|
165 | (1) |
|
|
165 | (6) |
|
6.2.1.2 Graphene/PEDOT: PSS |
|
|
171 | (2) |
|
|
173 | (1) |
|
6.2.2.1 Powder Mixing Method |
|
|
174 | (4) |
|
6.2.2.2 Solution Mixing Method |
|
|
178 | (2) |
|
6.2.2.3 In Situ Polymerization Method |
|
|
180 | (4) |
|
6.2.2.4 Layer-by-Layer (LBL) Deposition |
|
|
184 | (1) |
|
|
184 | (2) |
|
6.2.4 Other P-Type Conducting Polymers |
|
|
186 | (1) |
|
6.2.5 N-Type TE Composites |
|
|
187 | (1) |
|
6.3 Non-Conducting Polymers |
|
|
188 | (6) |
|
|
190 | (1) |
|
6.3.2 Layer-by-Layer Deposition |
|
|
191 | (2) |
|
|
193 | (1) |
|
6.4 Ternary Thermoelectric Material |
|
|
194 | (4) |
|
6.4.1 Non-conducting Polymer |
|
|
194 | (1) |
|
|
195 | (3) |
|
|
198 | (11) |
|
|
199 | (10) |
|
7 Low-dimensional Thermoelectric Materials |
|
|
209 | (30) |
|
|
|
|
|
|
|
|
|
209 | (1) |
|
7.2 Zero-Dimensional (OD) Inorganic Semiconducting Nanocrystals |
|
|
209 | (5) |
|
|
210 | (1) |
|
7.2.2 Materials and Properties |
|
|
211 | (1) |
|
|
211 | (2) |
|
7.2.2.2 Graphene Quantum Dots |
|
|
213 | (1) |
|
7.3 One-Dimensional (ID) Thermoelectric Materials |
|
|
214 | (8) |
|
7.3.1 ID Organic Thermoelectric Materials |
|
|
214 | (1) |
|
7.3.1.1 Poly(3,4-Ethylenedioxythiophene) Nanowires |
|
|
214 | (3) |
|
7.3.1.2 Other Polymer Nanowires |
|
|
217 | (2) |
|
|
219 | (3) |
|
7.4 Two-Dimensional (2D) Thermoelectric Materials |
|
|
222 | (17) |
|
|
223 | (3) |
|
|
226 | (3) |
|
|
229 | (4) |
|
|
233 | (6) |
Index |
|
239 | |