Muutke küpsiste eelistusi

E-raamat: Fluid Dynamics for Global Environmental Studies

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 06-Apr-2017
  • Kirjastus: Springer Verlag, Japan
  • Keel: eng
  • ISBN-13: 9784431564997
  • Formaat - EPUB+DRM
  • Hind: 135,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 06-Apr-2017
  • Kirjastus: Springer Verlag, Japan
  • Keel: eng
  • ISBN-13: 9784431564997

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book introduces the basic concepts of environmental fluid dynamics. It is intended for the use by students, researchers, engineers and specialists working not only in the general fluid research but also in the atmospheric and oceanic research fields. The Earth is covered by atmosphere and oceans and is exposed to solar wind. Therefore, the knowledge of fluid dynamics is essential for tackling its environmental issues. Although many textbooks have treated fluid dynamics, almost no book has been published that clearly describes the whole essential ideas, covering from the fundamentals of fluid dynamics to advanced environmental sciences, with careful sequential explanations of the governing mathematics. This textbook has been developed to solve these educational problems, and is actually used in lectures in the graduate school of Kyushu University for nearly 15 years.
1 Fundamental Equations in Fluid Dynamics
1(44)
1.1 Fluid and Fluid Dynamics
1(2)
1.2 Stress and Stress Tensors
3(7)
1.2.1 Body Force and Surface Force
3(1)
1.2.2 Stress and Stress Tensors
3(5)
1.2.3 Stress Tensors in Stationary Fluids
8(2)
1.3 Specifications of Fluid Motions
10(5)
1.3.1 Lagrangian and Eulerian Specifications
10(4)
1.3.2 Streamlines, Path Lines and Streak Lines
14(1)
1.4 Mass Conservation Law
15(4)
1.5 Equations for Perfect Fluids
19(4)
1.5.1 Euler's Equation
19(1)
1.5.2 Equation of State
20(1)
1.5.3 Boundary Conditions
21(2)
1.6 Local Motion and Deformation of Fluids
23(4)
1.7 Relationship Between Rate-of-Strain and Stress
27(3)
1.8 Navier--Stokes Equation
30(1)
1.9 Energy Equations
31(5)
1.10 Vorticity and Vorticity Equation
36(9)
References
42(3)
2 Dynamics of Perfect Fluids
45(52)
2.1 Lagrange's Vortex Theorem
45(3)
2.2 Circulation and Vorticity
48(1)
2.3 Circulation Theorem and Vortex Theorem
49(3)
2.3.1 Kelvin's Circulation Theorem
49(1)
2.3.2 Helmholtz Vortex Theorem
50(1)
2.3.3 Flow and Circulation Around a Wing Section
50(2)
2.4 Bernoulli's Theorem
52(2)
2.4.1 Irrotational Flows
52(1)
2.4.2 Steady Flows
52(2)
2.5 Velocity Potential
54(10)
2.5.1 The Laplace Equation
55(1)
2.5.2 Sources and Sinks
56(4)
2.5.3 Doublet
60(2)
2.5.4 Flow Around a Sphere
62(2)
2.6 Vector Potential
64(3)
2.7 Stream Function
67(4)
2.7.1 Two-Dimensional Flow
67(3)
2.7.2 Three-Dimensional Axisymmetric Flow
70(1)
2.8 Complex Velocity Potential
71(3)
2.9 Simple Two-Dimensional Potential Flows
74(10)
2.9.1 Uniform Flow
74(1)
2.9.2 Flow Around a Corner
74(2)
2.9.3 Sources and Sinks
76(2)
2.9.4 Vortex Filaments
78(1)
2.9.5 Doublet
79(2)
2.9.6 Flow Around a Cylinder
81(3)
2.10 Forces Acting on a Body
84(6)
2.10.1 The Case of Steady Motion
85(1)
2.10.2 The Case of Non-steady Motion
86(4)
2.11 Flow Around a Flat Plate
90(7)
References
96(1)
3 Theory of Free Surface Waves
97(22)
3.1 Boundary Condition Equations on a Free Surface
97(3)
3.2 Small-Amplitude Progressive Waves
100(4)
3.3 Water Particle Trajectory and Mass Flux
104(2)
3.4 Group Velocity
106(3)
3.5 Principle of Energy Conservation
109(2)
3.6 Progressive Wave Energy and Propagation Velocity
111(2)
3.7 Standing Waves
113(6)
References
117(2)
4 Dynamics of Viscous Fluids
119(40)
4.1 Reynolds Number and the Law of Similarity
119(2)
4.2 Exact Solutions of the Navier--Stokes Equation
121(13)
4.2.1 Couette Flow
121(2)
4.2.2 Plane Poiseuille Flow
123(1)
4.2.3 Hagen--Poiseuille Flow
124(2)
4.2.4 Rayleigh Flow
126(4)
4.2.5 Couette Flow in Coaxial Cylinders
130(1)
4.2.6 Attenuated Vortex
131(3)
4.3 Flows at Low Reynolds Number
134(6)
4.3.1 Stokes Approximation
134(1)
4.3.2 Slow Flow Around a Sphere Placed in a Uniform Flow
135(5)
4.4 Boundary Layer Theory
140(19)
4.4.1 Flows with High Reynolds Number
140(4)
4.4.2 Boundary Layer Equation
144(2)
4.4.3 Thickness of the Boundary Layer
146(1)
4.4.4 Analytical Solution of Boundary Layer Equation
147(6)
4.4.5 Separation of the Boundary Layer
153(4)
References
157(2)
5 Turbulent Flow
159(36)
5.1 Transition from Laminar Flow to Turbulent Flow
159(2)
5.1.1 Flow in a Pipe
159(1)
5.1.2 Transition in Flow Behind a Cylinder
160(1)
5.2 Stability Theory of Flow
161(4)
5.3 Basic Equation of Turbulent Flow
165(7)
5.3.1 Average/Mean
166(1)
5.3.2 Equation of Fluid Motion
167(1)
5.3.3 Equation of Mean Flow in Turbulence
168(1)
5.3.4 Equations Relating to the Variation Components
169(3)
5.4 Closure
172(4)
5.5 Shear-Flow Turbulence Near a Wall (Ground)
176(2)
5.6 Law of Similarity in Homogeneous Isotropic Turbulence
178(15)
5.6.1 Homogeneous Isotropic Turbulence
178(1)
5.6.2 Fourier Component Form of the Equation
179(2)
5.6.3 Energy Equation
181(3)
5.6.4 Energy Cascade
184(1)
5.6.5 Law of Similarity in Three-Dimensional Isotropic Turbulent Flows
185(3)
5.6.6 Law of Similarity in Two-Dimensional Isotropic Turbulent Flows
188(5)
5.7 Turbulent Flow Analysis
193(2)
References
194(1)
6 Dynamics of Stratified Fluids
195(28)
6.1 Hydrostatic Equilibrium
196(1)
6.2 Hydrostatic Stability
197(4)
6.3 Boussinesq Approximation
201(5)
6.4 Internal Gravity Waves
206(5)
6.5 Benard Convection
211(12)
6.5.1 Fundamental Equation and Boundary Conditions
211(1)
6.5.2 Nondimensionalization
212(1)
6.5.3 Basic Field
213(1)
6.5.4 Equation for Small Disturbances
214(1)
6.5.5 Elimination of Variables
214(2)
6.5.6 Fourier Components of the Equation
216(1)
6.5.7 Onset of Convective Motion
217(2)
6.5.8 Disturbance Developing Near Critical Rayleigh Number
219(2)
References
221(2)
7 Dynamics of Rotating Fluids
223(40)
7.1 Fundamental Equation in a Rotating System
223(5)
7.1.1 Transformation from Fixed Coordinate Frame to Rotating Coordinate System
224(1)
7.1.2 Velocity and Acceleration in a Rotating Coordinate System
225(1)
7.1.3 Fundamental Navier-Stokes Equation in a Rotating System
226(2)
7.2 Simplification of Equations
228(9)
7.2.1 Local Cartesian Coordinates
228(2)
7.2.2 Elimination of Vertical Flow
230(5)
7.2.3 Linearization of Equation
235(1)
7.2.4 The f-plane and β-plane Approximations
236(1)
7.2.5 Special Solution Used in This
Chapter
236(1)
7.3 Steady Field in the f-plane Approximation
237(9)
7.3.1 Geostrophic Flow
237(2)
7.3.2 Taylor-Proudman Theorem
239(2)
7.3.3 Ekman's Drift Current
241(2)
7.3.4 Vertical Mean Flow and Ekman Transport
243(1)
7.3.5 Ekman Upwelling and Downwelling
244(2)
7.4 Time Variation Field in the f-plane Approximation
246(5)
7.4.1 Inertial Gravity Waves
246(1)
7.4.2 Inertial Oscillations
247(1)
7.4.3 Kelvin Waves
248(2)
7.4.4 Quasi-geostrophic Component
250(1)
7.5 Time Variation Field in β-plane Approximation
251(3)
7.5.1 Quasi-geostrophic Component in the β-plane
251(1)
7.5.2 Rossby Waves
252(1)
7.5.3 Long Rossby Waves
253(1)
7.6 Steady Field in the β-plane Approximation
254(3)
7.6.1 Steady Vorticity Equation in the β-plane
254(1)
7.6.2 Western Intensification
255(2)
7.6.3 Sverdrup Transport
257(1)
7.7 Rotating Stratified Fluid and General Circulation of the Oceans
257(6)
7.7.1 Extension to a Two-Layered Fluid
258(1)
7.7.2 Internal Radius of Deformation
259(2)
7.7.3 Baroclinic Rossby Waves
261(1)
7.7.4 Thermohaline Circulation and Wind-Driven Circulation
261(1)
References
262(1)
8 Environmental Fluid Dynamics
263(24)
8.1 Global Energy Balance
263(10)
8.1.1 Radiation Equilibrium
263(4)
8.1.2 Atmospheric General Circulation
267(2)
8.1.3 Oceanic General Circulation
269(4)
8.2 Global Water Circulation
273(7)
8.2.1 Freshwater Balance
273(1)
8.2.2 Freshwater Transport
274(3)
8.2.3 Transport of Water and Nutrients
277(1)
8.2.4 Water Transport and Fish Catch
278(2)
8.3 Global Carbon Circulation
280(7)
8.3.1 Carbon Balance
280(2)
8.3.2 Atmospheric Carbon
282(1)
8.3.3 Oceanic Carbon
283(2)
8.3.4 Carbon on the Seabed
285(1)
References
286(1)
9 Space Plasma Environment
287
9.1 Space is Not a Vacuum
287(1)
9.2 The Sun
288(3)
9.3 Solar Wind Models
291(10)
9.3.1 Hydrostatic Equilibrium Under Uniform Gravity
292(1)
9.3.2 Hydrostatic Equilibrium for the Gravity Obeying the Inverse-Square Law
293(1)
9.3.3 Streaming Solution in a Cartesian Geometry
294(1)
9.3.4 Streaming Solution in a Spherical Geometry
295(2)
9.3.5 Polytropic Solar Wind
297(2)
9.3.6 Physical Mechanism of the Solar Wind Acceleration
299(2)
9.4 What is a Plasma?
301(5)
9.4.1 Debye Shielding
301(2)
9.4.2 Plasma Parameter
303(1)
9.4.3 Collisional and Collisionless Plasma
304(2)
9.5 Waves in a Cold Plasma
306(6)
9.5.1 When B0 = 0
307(1)
9.5.2 When B0 ≠ 0
308(4)
9.6 Magnetohydrodynamics (MHD)
312(7)
9.6.1 Formulation
312(4)
9.6.2 MHD Waves
316(3)
9.7 Magnetosphere
319(7)
9.7.1 Magnetopause
320(2)
9.7.2 Bow Shock, Magnetosheath, and Foreshock
322(2)
9.7.3 Plasmasphere
324(1)
9.7.4 Radiation Belt
324(1)
9.7.5 Magnetotail, Lobe, and Plasma Mantle
325(1)
9.7.6 Ionosphere
325(1)
9.8 Space Weather
326
9.8.1 Solar Flares, CMEs, and Solar Energetic Particles (SEP)
327(1)
9.8.2 Coronal Hole
328(1)
9.8.3 Geomagnetic Storm and Ionospheric Storm
329(1)
9.8.4 Space Weather Effect on Space Systems
329(1)
9.8.5 Space Weather Effects on Ground Systems
330(1)
9.8.6 Space Weather Effects on Terrestrial Weather
331(1)
References
331
Erratum to: Fluid Dynamics for Global Environmental Studies 1(332)
Appendix 333(14)
Commentary on Exercises 347(16)
Index 363