Muutke küpsiste eelistusi

E-raamat: Fluid Dynamics: Theory, Computation, and Numerical Simulation

  • Formaat: PDF+DRM
  • Ilmumisaeg: 16-Jun-2009
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9780387958712
  • Formaat - PDF+DRM
  • Hind: 122,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 16-Jun-2009
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9780387958712

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Ready access to computers has de ned a new era in teaching and learning. The opportunity to extend the subject matter of traditional science and engineering curricula into the realm of scienti c computing has become not only desirable, but also necessary. Thanks to portability and low overhead and operating cost, experimentation by numerical simulation has become a viable substitute, and occasionally the only alternative, to physical experimentation. The new framework has necessitated the writing of texts and monographs from a modern perspective that incorporates numerical and computer progr- ming aspects as an integral part of the discourse. Under this modern directive, methods, concepts, and ideas are presented in a uni ed fashion that motivates and underlines the urgency of the new elements, but neither compromises nor oversimpli es the rigor of the classical approach. Interfacing fundamental concepts and practical methods of scienti c c- puting can be implemented on di erent levels. In one approach, theory and implementation are kept complementary and presented in a sequential fashion. In another approach, the coupling involves deriving computational methods and simulation algorithms, and translating equations into computer code - structions immediately following problem formulations. Seamlessly interjecting methods of scienti c computing in the traditional discourse o ers a powerful venue for developing analytical skills and obtaining physical insight.

Arvustused

From the reviews of the second edition:

The book unites the traditional fluid dynamics with computer programming and numerical solutions using MATLAB programs and CFD methods. The combination of introduction into theoretical and numerical fluid dynamics by the combined treatment immediately after formulation of many problems is interesting and very useful. highly recommended for students, researchers, and engineers. (Bernd Platzer, Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 90 (6), 2010)

Preface v
Introduction to Kinematics
1(53)
Fluids and solids
1(1)
Fluid parcels and flow kinematics
2(1)
Coordinates, velocity, and acceleration
3(13)
Cylindrical polar coordinates
6(3)
Spherical polar coordinates
9(4)
Plane polar coordinates
13(3)
Fluid velocity
16(3)
Velocity vector field, streamlines and stagnation points
18(1)
Point particles and their trajectories
19(9)
Path lines
20(1)
Ordinary differential equations (ODEs)
20(1)
Explicit Euler method
21(2)
Modified Euler method
23(3)
Description in polar coordinates
26(1)
Streaklines
27(1)
Material surfaces and elementary motions
28(10)
Fluid parcel rotation
28(1)
Fluid parcel deformation
29(1)
Fluid parcel expansion
30(1)
Superposition of rotation, deformation, and expansion
31(1)
Rotated coordinates
32(2)
Flow decomposition
34(4)
Interpolation
38(16)
Interpolation in one dimension
38(4)
Interpolation in two dimensions
42(3)
Interpolation of the velocity in a two-dimensional flow
45(4)
Streamlines by interpolation
49(5)
More on Kinematics
54(61)
Fundamental modes of fluid parcel motion
54(11)
Function linearization
55(2)
Velocity gradient tensor
57(2)
Relative motion of point particles
59(1)
Fundamental motions in two-dimensional flow
60(2)
Fundamental motions in three-dimensional flow
62(1)
Gradient in polar coordinates
62(3)
Fluid parcel expansion
65(1)
Fluid parcel rotation and vorticity
66(5)
Curl and vorticity
68(2)
Two-dimensional flow
70(1)
Axisymmetric flow
70(1)
Fluid parcel deformation
71(3)
Numerical differentiation
74(11)
Numerical differentiation in one dimension
74(2)
Numerical differentiation in two dimensions
76(2)
Velocity gradient and related functions
78(7)
Flow rate
85(9)
Areal flow rate and flux
87(1)
Areal flow rate across a line
88(1)
Numerical integration
89(1)
The Gauss divergence theorem in two dimensions
90(1)
Flow rate in a three-dimensional flow
91(1)
Gauss divergence theorem in three dimensions
92(1)
Axisymmetric flow
92(2)
Mass conservation
94(5)
Mass flux and mass flow rate
94(1)
Mass flow rate across a closed line
94(1)
The continuity equation
95(1)
Three-dimensional flow
96(1)
Rigid-body translation
96(1)
Evolution equation for the density
97(2)
Properties of point particles
99(7)
The material derivative
100(1)
The continuity equation
101(1)
Point particle acceleration
102(4)
Incompressible fluids and stream functions
106(5)
Mathematical consequences of incompressibility
107(1)
Stream function for two-dimensional flow
107(2)
Stream function for axisymmetric flow
109(2)
Kinematic conditions at boundaries
111(4)
The no-penetration boundary condition
111(4)
Flow Computation based on Kinematics
115(48)
Flow classification based on kinematics
115(2)
Irrotational flow and the velocity potential
117(7)
Two-dimensional flow
117(2)
Incompressible fluids and the harmonic potential
119(1)
Three-dimensional flow
120(1)
Boundary conditions
121(1)
Cylindrical polar coordinates
122(1)
Spherical polar coordinates
122(1)
Plane polar coordinates
123(1)
Finite-difference methods
124(14)
Boundary conditions
124(2)
Finite-difference grid
126(1)
Finite-difference discretization
127(1)
Compilation of a linear system
128(10)
Linear solvers
138(3)
Gauss elimination
139(1)
A menagerie of other methods
140(1)
Two-dimensional point sources and point-source dipoles
141(10)
Function superposition and fundamental solutions
141(1)
Two-dimensional point source
141(3)
Two-dimensional point-source dipole
144(4)
Flow past a circular cylinder
148(1)
Sources and dipoles in the presence of boundaries
149(2)
Three-dimensional point sources and point-source dipoles
151(4)
Three-dimensional point source
151(1)
Three-dimensional point-source dipole
152(1)
Streaming flow past a sphere
153(1)
Sources and dipoles in the presence of boundaries
154(1)
Point vortices and line vortices
155(8)
The potential of irrotational circulatory flow
156(1)
Flow past a circular cylinder
157(1)
Circulation
158(3)
Line vortices in three-dimensional flow
161(2)
Forces and Stresses
163(55)
Body forces and surface forces
163(2)
Body forces
163(1)
Surface forces
164(1)
Traction and the stress tensor
165(6)
Traction on either side of a fluid surface
168(1)
Traction on a boundary
169(1)
Symmetry of the stress tensor
170(1)
Traction jump across a fluid interface
171(12)
Force balance at a two-dimensional interface
172(4)
Force balance at a three-dimensional interface
176(3)
Axisymmetric interfaces
179(4)
Stresses in a fluid at rest
183(3)
Pressure from molecular motions
184(1)
Jump in the pressure across an interface
185(1)
Constitutive equations
186(10)
Simple fluids
188(1)
Incompressible Newtonian fluids
188(2)
Viscosity
190(2)
Ideal fluids
192(1)
Significance of the pressure in incompressible fluids
193(1)
Pressure in compressible fluids
193(3)
Simple non-Newtonian fluids
196(3)
Unidirectional shear flow
197(2)
Stresses in polar coordinates
199(7)
Cylindrical polar coordinates
200(2)
Spherical polar coordinates
202(2)
Plane polar coordinates
204(2)
Boundary conditions for the tangential velocity
206(2)
No-slip boundary condition
206(1)
Slip boundary condition
207(1)
Wall stresses in Newtonian fluids
208(2)
Shear stress
208(1)
Normal stress
209(1)
Interfacial surfactant transport
210(8)
Two-dimensional interfaces
210(4)
Axisyrmmetric interfaces
214(2)
Three-dimensional interfaces
216(2)
Hydrostatics
218(90)
Equilibrium of pressure and body forces
218(7)
Equilibrium of an infinitesimal parcel
220(2)
Gases in hydrostatics
222(1)
Liquids in hydrostatics
223(2)
Force exerted on immersed surfaces
225(6)
A sphere floating on a flat interface
226(5)
Archimedes' principle
231(4)
Net force on a submerged body
233(1)
Moments
234(1)
Interfacial shapes
235(4)
Curved interfaces
236(1)
The Laplace-Young equation
237(1)
Three-dimensional interfaces
238(1)
A semi-infinite interface attached to an inclined plate
239(6)
Numerical method
241(4)
A meniscus between two parallel plates
245(8)
The shooting method
249(4)
A two-dimensional drop on a horizontal or inclined plane
253(20)
Drop on a horizontal plane
253(8)
A drop on an inclined plane
261(12)
Axisymmetric meniscus inside a tube
273(3)
Axisymmetric drop on a horizontal plane
276(10)
Solution space
278(8)
A sphere straddling an interface
286(12)
Spheroidal particle
296(2)
A three-dimensional meniscus
298(10)
Elliptic coordinates
299(1)
Finite-difference method
300(6)
Capillary force and torque
306(2)
Equation of Motion and Vorticity Transport
308(52)
Newton's second law of motion for a fluid parcel
308(5)
Rate of change of linear momentum
309(1)
Equation of parcel motion
309(1)
Two-dimensional flow
310(3)
Integral momentum balance
313(6)
Flow through a sudden enlargement
316(2)
Iseritropic flow through a conduit
318(1)
Cauchy's equation of motion
319(8)
Hydrodynamic volume force
320(1)
Force on an infinitesimal parcel
320(2)
The equation of motion
322(1)
Evolution equations
323(1)
Cylindrical polar coordinates
323(2)
Spherical polar coordinates
325(1)
Plane polar coordinates
325(1)
Vortex force
326(1)
Summary of governing equation
326(1)
Accelerating frame of reference
326(1)
Euler's and Bernoulli's equations
327(10)
Boundary conditions
328(1)
Irrotational flow
329(2)
Steady irrotational flow
331(3)
Steady rotational flow
334(1)
Flow with uniform vorticity
335(2)
The Navier-Stokes equation
337(6)
Pressure and viscous forces
338(1)
A radially expanding or contracting bubble
339(1)
Boundary conditions
340(1)
Polar coordinates
341(2)
Vorticity transport
343(7)
Two-dimensional flow
343(3)
Axisymmetric flow
346(1)
Three-dimensional flow
347(3)
Dynamic similitude and the Reynolds number
350(5)
Dimensional analysis
352(3)
Structure of a flow as a function of the Reynolds number
355(2)
Stokes flow
356(1)
Flow at high Reynolds numbers
356(1)
Laminar and turbulent flow
357(1)
Dimensionless numbers in fluid dynamics
357(3)
Channel, Tube, and Film Flow
360(64)
Steady flow in a two-dimensional channel
360(13)
Two-layer flow
363(2)
Multi-layer flow
365(5)
Power-law fluids
370(3)
Steady film flow down an inclined plane
373(4)
Multi-film flow
374(1)
Power-law fluids
375(2)
Steady flow through a circular tube
377(6)
Multi-layer tube flow
380(1)
Flow due to a translating sector
380(3)
Steady flow through an annular tube
383(4)
Multi-layer annular flow
387(1)
Steady flow in channels and tubes
387(8)
Elliptical tube
388(2)
Rectangular tube
390(3)
Triangular tube
393(1)
Semi-infinite rectangular channel
393(2)
Steady swirling flow
395(5)
Annular flow
396(3)
Multi-layer flow
399(1)
Transient channel flow
400(9)
Couette flow
400(3)
Impulsive motion of a plate in a semi-infinite fluid
403(3)
Pressure- and gravity-driven flow
406(3)
Oscillatory channel flow
409(6)
Oscillatory Couette flow
409(2)
Rayleigh's oscillating plate
411(2)
Pulsating pressure-driven flow
413(2)
Transient and oscillatory flow in a circular tube
415(9)
Transient Poiseuille flow
415(5)
Pulsating pressure-driven flow
420(2)
Transient circular Couette flow
422(1)
More on Bessel functions
422(2)
Finite-Difference Methods
424(70)
Choice of governing equations
424(1)
Unidirectional flow; velocity/pressure formulation
425(18)
Governing equations
426(1)
Explicit finite-difference method
426(3)
Implicit finite-difference method
429(6)
Steady state
435(1)
Two-layer flow
436(7)
Unidirectional flow; velocity/vorticity formulation
443(4)
Boundary conditions for the vorticity
444(1)
Alternative set of equations
445(1)
Comparison with the velocity/pressure formulation
446(1)
Unidirectional flow; stream function/vorticity formulation
447(4)
Boundary conditions for the vorticity
448(1)
A semi-implicit method
449(2)
Two-dimensional flow; stream function/vorticity formulation
451(12)
Flow in a cavity
451(1)
Finite-difference grid
452(1)
Unsteady flow
453(1)
Steady flow
454(6)
Summary
460(3)
Velocity/pressure formulation
463(3)
Alternative system of governing equations
464(1)
Pressure boundary conditions
465(1)
Compatibility condition for the pressure
465(1)
Operator splitting and solenoidal projection
466(19)
Convection-diffusion step
467(2)
Projection step
469(2)
Boundary conditions for the intermediate velocity
471(1)
Flow in a cavity
471(13)
Computation of the pressure
484(1)
Staggered grids
485(9)
Low Reynolds Number Flow
494(68)
Flow in narrow channels
494(11)
Governing equations
495(1)
Scaling
495(2)
Equations of lubrication flow
497(1)
Lubrication in a slider bearing
497(3)
Flow in a wavy channel
500(3)
Dynamic hifting
503(2)
Film flow on a horizontal or inclined wall
505(6)
Thin-film flow
506(3)
Numerical methods
509(2)
Multi-film flow on a horizontal or inclined wall
511(12)
Evolution equations
514(2)
Numerical methods
516(7)
Two-layer channel flow
523(11)
Flow due to the motion of a sphere
534(7)
Formulation in terms of the stream function
535(4)
Traction, force, and the Archimedes-Stokes law
539(2)
Point forces and point sources in Stokes flow
541(8)
The Oseen tensor and the point force
542(2)
Flow representation in terms of singularities
544(1)
A sphere moving inside a circular tube
544(3)
Boundary integral representation
547(2)
Two-dimensional Stokes flow
549(5)
Flow due to the motion of a cylinder
549(3)
Rotation of a circular cylinder
552(1)
Simple shear flow past a circular cylinder
552(1)
The Oseen tensor and the point force
553(1)
Local solutions
554(8)
Separation of variables
555(2)
Flow near a corner
557(5)
High Reynolds Number Flow
562(69)
Changes in the structure of a flow with increasing Reynolds number
562(4)
Prandtl boundary layer analysis
566(5)
Boundary-layer equations
568(1)
Surface curvilinear coordinates
569(1)
Parabolization
570(1)
Flow separation
570(1)
Blasius boundary layer on a semi-infinite plate
571(8)
Self-similarity and the Blasius equation
571(3)
Numerical solution
574(2)
Wall shear stress and drag force
576(1)
Vorticity transport
577(2)
Displacement and momentum thickness
579(4)
Von Karman's approximate method
581(2)
Boundary layers in accelerating and decelerating flow
583(4)
Self-similarity
585(1)
Numerical solution
586(1)
Momentum integral method
587(12)
The von Karman-Pohlhausen method
589(1)
Pohlhausen polynomials
590(2)
Numerical solution
592(3)
Boundary layer around a curved body
595(4)
Instability of shear flows
599(11)
Stability analysis of shear flow
600(1)
Normal-mode analysis
601(3)
Finite-difference solution
604(6)
Turbulent flow
610(13)
Transition to turbulence
611(2)
Lagrangian turbulence
613(1)
Features of turbulent motion
613(2)
Decomposition into mean and fluctuating components
615(2)
Inviscid scales
617(1)
Viscous scales
618(1)
Relation between inviscid and viscous scales
618(1)
Fourier analysis
619(4)
Analysis and modeling of turbulent flow
623(8)
Reynolds stresses
623(2)
Prandtl's mixing length model
625(2)
Logarithmic law for wall-bounded shear flow
627(1)
Correlations
628(3)
Vortex Motion
631(49)
Vorticity and circulation in two-dimensional flow
631(2)
Point vortices
633(12)
Dirac's delta function in a plane
634(2)
Evolution of the point vortex strength
636(1)
Velocity of a point vortex
636(1)
Motion of a collection of point vortices
636(1)
Effect of boundaries
637(2)
A periodic array of point vortices
639(2)
A point vortex between two parallel walls
641(1)
A point vortex in a semi-infinite strip
641(4)
Two-dimensional flow with distributed vorticity
645(12)
Vortex patches with uniform vorticity
646(3)
Contour dynamics
649(2)
Gauss integration quadrature
651(1)
Representation with circular arcs
652(5)
Vorticity and circulation in three-dimensional flow
657(4)
Preservation of circulation
658(2)
Flow induced by vorticity
660(1)
Axisymmetric flow induced by vorticity
661(14)
Biot-Savart integral for axisymmetric flow
663(3)
Line vortex ring
666(2)
Vortex rings with a finite core
668(4)
Motion of a collection of vortex rings
672(1)
Vortex patch in axisymmetric flow
673(2)
Three-dimensional vortex motion
675(5)
Vortex particles
676(1)
Line vortices and the local induction approximation (LIA)
676(4)
Aerodynamics
680(48)
General features of flow past an aircraft
680(2)
Airfoils and the Kutta-Joukowski condition
682(5)
The Kutta-Joukowski theorem
686(1)
The Kutta-Joukowski condition
687(1)
Vortex panels
687(7)
From point vortices to vortex panels
688(1)
Vortex panels with uniform strength
689(2)
Vortex panel with linear strength density
691(3)
Vortex panel method
694(15)
Velocity in terms of the panel strength
698(1)
Point collocation
699(1)
Circulation and pressure coefficient
700(1)
Lift
700(2)
Vortex panel code
702(7)
Vortex sheet representation
709(8)
Thin airfoil theory
709(8)
Point-source-dipole panels
717(6)
Source-dipole panel method
718(2)
Source-dipole representation
720(1)
Solution of the interior problem
721(2)
Point-source panels and Green's third identity
723(5)
Source panels with constant density
723(2)
Green's third identity
725(3)
A FDLIB Software Library
728(10)
B References
738(3)
C Matlab Primer
741(22)
Invoking Matlab
741(1)
Matlab programming
742(1)
Matlab Grammar and syntax
743(1)
Precision
744(1)
Matlab commands
744(3)
Matlab examples
747(3)
Matlab functions
750(1)
User-defined functions
751(4)
Matlab graphics
755(8)
Index 763