Nomenclature |
|
xv | |
Author |
|
xxv | |
Preface |
|
xxvii | |
|
|
1 | (34) |
|
|
1 | (3) |
|
|
4 | (1) |
|
|
5 | (2) |
|
|
7 | (1) |
|
1.5 Coefficient of Volume Expansion |
|
|
7 | (2) |
|
|
9 | (1) |
|
|
9 | (4) |
|
1.8 Newtonian and Non-Newtonian Fluids |
|
|
13 | (5) |
|
1.9 Surface Energy and Surface Tension |
|
|
18 | (8) |
|
|
22 | (4) |
|
|
26 | (2) |
|
1.11 An Overview of Fluid Analysis Types |
|
|
28 | (6) |
|
1.11.1 Viscous vs. Inviscid Flow |
|
|
28 | (1) |
|
1.11.2 Steady vs. Unsteady Flow |
|
|
29 | (1) |
|
|
29 | (1) |
|
1.11.4 Wall-Bounded vs. Free-Shear Flow |
|
|
29 | (1) |
|
1.11.5 One-, Two-, and Three-Dimensional Flow |
|
|
29 | (1) |
|
1.11.6 Compressible vs. Incompressible Flow |
|
|
30 | (4) |
|
|
34 | (1) |
|
Chapter 2 Pressure and Stationary Fluid |
|
|
35 | (28) |
|
2.1 Pressure in Stationary Fluid |
|
|
35 | (1) |
|
|
36 | (3) |
|
|
39 | (3) |
|
|
42 | (3) |
|
2.5 Atmospheric Air Pressure |
|
|
45 | (4) |
|
2.6 Static Liquid Force on an Inclined Surface |
|
|
49 | (4) |
|
2.7 Normal Stresses in Static Fluid |
|
|
53 | (1) |
|
2.8 Bouyancy Force in Fluid |
|
|
53 | (3) |
|
2.9 Stability of Floating Objects |
|
|
56 | (5) |
|
|
61 | (2) |
|
Chapter 3 Kinematics of Fluid Particle |
|
|
63 | (20) |
|
3.1 Lagrangian and Eulerian Descriptions of Flow field |
|
|
63 | (2) |
|
3.2 Acceleration in Fluid |
|
|
65 | (2) |
|
3.3 Deformation of Fluid Particle |
|
|
67 | (6) |
|
|
69 | (1) |
|
|
70 | (3) |
|
3.4 Movement of Fluid Particle |
|
|
73 | (8) |
|
|
73 | (8) |
|
|
81 | (2) |
|
Chapter 4 Differential Formulation of Conservation Laws |
|
|
83 | (14) |
|
|
83 | (2) |
|
4.2 The Navier-Stokes Equations |
|
|
85 | (5) |
|
4.2.1 Acceleration in Fluid |
|
|
85 | (1) |
|
|
85 | (3) |
|
4.2.3 Constitutive Relations |
|
|
88 | (1) |
|
4.2.4 Differential Formulation |
|
|
89 | (1) |
|
4.3 Vectors, Tensors, and Conservation Laws |
|
|
90 | (5) |
|
|
95 | (2) |
|
Chapter 5 Dimensional Analysis and Similitude |
|
|
97 | (22) |
|
5.1 Vaschy-Buckingham Pi Theorem |
|
|
98 | (4) |
|
|
102 | (1) |
|
5.2 Other Approaches for Dimensionless Numbers |
|
|
102 | (6) |
|
|
102 | (4) |
|
5.2.2 Ratio of Velocities |
|
|
106 | (1) |
|
|
106 | (1) |
|
|
107 | (1) |
|
5.2.5 Ratio of Dimensionless Numbers |
|
|
107 | (1) |
|
|
108 | (1) |
|
|
108 | (9) |
|
|
117 | (2) |
|
Chapter 6 The Integral Analysis |
|
|
119 | (38) |
|
6.1 Integral Formulation of Continuity Equation |
|
|
119 | (5) |
|
|
124 | (1) |
|
|
125 | (1) |
|
6.4 Lumped Energy Analysis |
|
|
125 | (2) |
|
|
127 | (5) |
|
6.6 Torricelli Theorem and Orifice Losses |
|
|
132 | (7) |
|
|
139 | (2) |
|
6.8 Determination of Flow Rates through Venturimeter |
|
|
141 | (2) |
|
6.9 Extended Bernoulli Equation |
|
|
143 | (3) |
|
6.10 Estimation of Forces |
|
|
146 | (9) |
|
6.10.1 Integral Formulation of Momentum Equation |
|
|
146 | (1) |
|
6.10.2 Jet's Force on the Moving Plate |
|
|
146 | (2) |
|
|
148 | (7) |
|
|
155 | (2) |
|
Chapter 7 Irrotational Flow |
|
|
157 | (36) |
|
7.1 Concept of Stream Function (\ff) |
|
|
157 | (3) |
|
7.1.1 Equation of Streamlines |
|
|
158 | (2) |
|
|
160 | (1) |
|
|
161 | (1) |
|
|
162 | (1) |
|
7.5 Potential Vortex Circulation |
|
|
163 | (4) |
|
7.6 Circulation and Inviscid Vortex |
|
|
167 | (3) |
|
7.7 Circulation in Free Vortex |
|
|
170 | (1) |
|
|
171 | (1) |
|
7.9 Superposition: Rankine Half Body |
|
|
171 | (5) |
|
7.10 Superposition: Source and Sink Nearby |
|
|
176 | (1) |
|
7.11 Superposition: Source + Sink + Uniform Flow |
|
|
177 | (1) |
|
|
178 | (2) |
|
7.13 Flow About a Circular Cylinder |
|
|
180 | (3) |
|
7.14 Flow along a Spinning Cylinder |
|
|
183 | (2) |
|
|
185 | (1) |
|
|
185 | (6) |
|
|
191 | (2) |
|
|
193 | (30) |
|
8.1 Flow between Parallel Plates |
|
|
193 | (3) |
|
8.2 Flow between Plates with One Plate Moving |
|
|
196 | (3) |
|
8.3 Hagen-Poiseuille Flow |
|
|
199 | (6) |
|
8.4 Starting Flow in a Pipe |
|
|
205 | (5) |
|
8.5 Stoke's First Problem |
|
|
210 | (4) |
|
|
214 | (7) |
|
|
221 | (2) |
|
Chapter 9 Introduction to Turbulent Flows |
|
|
223 | (26) |
|
|
223 | (1) |
|
|
224 | (3) |
|
9.2.1 The Viscous Sublayer |
|
|
225 | (1) |
|
9.2.2 The Buffer Zone or Transition Zone |
|
|
226 | (1) |
|
|
227 | (1) |
|
9.3 Is There a Single Equation Available? |
|
|
227 | (3) |
|
|
230 | (8) |
|
9.4.1 Reynolds Averaged Navier-Stokes Equations |
|
|
231 | (4) |
|
9.4.2 Single Point Statistics |
|
|
235 | (1) |
|
|
235 | (1) |
|
|
236 | (2) |
|
9.5 Turbulent Fluctuations |
|
|
238 | (2) |
|
9.6 Turbulence Simulations |
|
|
240 | (2) |
|
9.6.1 Flow through Square Duct |
|
|
241 | (1) |
|
9.7 Laminar-to-Turbulent Transition |
|
|
242 | (5) |
|
|
247 | (2) |
|
Chapter 10 Viscous Flow through Conduits |
|
|
249 | (46) |
|
10.1 Laminar and Turbulent Diffusion |
|
|
249 | (4) |
|
10.2 Noncircular Conduits |
|
|
253 | (1) |
|
10.3 Entrance Length in Laminar Flows |
|
|
253 | (2) |
|
10.4 Friction in the Laminar Hydrodynamic Entry Length |
|
|
255 | (4) |
|
10.5 Entrance Length in Turbulent Flows |
|
|
259 | (2) |
|
10.6 The Darcy-Weisbach Empirical Equation |
|
|
261 | (1) |
|
10.7 Smooth Pipe's Darcy Friction Factors |
|
|
261 | (4) |
|
10.8 Darcy Friction Factors for Rough Pipes |
|
|
265 | (5) |
|
10.9 Fully Developed Turbulent Velocity Profile in Pipes |
|
|
270 | (1) |
|
10.10 Extended Bernoulli's Equation in Pipe Network |
|
|
270 | (3) |
|
|
273 | (8) |
|
|
274 | (2) |
|
10.11.2 Pressure Loss in Abrupt Contraction |
|
|
276 | (1) |
|
10.11.3 Pressure Loss in Sudden Enlargement |
|
|
277 | (2) |
|
10.11.4 Gradual Enlargement |
|
|
279 | (1) |
|
10.11.5 Flow-through Bends and Valves |
|
|
279 | (1) |
|
10.11.6 Flow-through Orifice |
|
|
279 | (2) |
|
10.12 Pipes in Series and in Parallel |
|
|
281 | (6) |
|
10.13 Similitude Considerations |
|
|
287 | (1) |
|
10.14 Pressure Loss in a Coiled Tube |
|
|
288 | (5) |
|
|
293 | (2) |
|
Chapter 11 External Boundary Layer Flows |
|
|
295 | (26) |
|
11.1 Order of Magnitude or Scale Analysis |
|
|
297 | (2) |
|
11.2 Blasius Solution for Laminar External Flows |
|
|
299 | (3) |
|
11.3 Integral Analysis for External Boundary Layer Flows |
|
|
302 | (6) |
|
11.4 Laminar Flow without Pressure Gradient |
|
|
308 | (4) |
|
11.5 Integral Analysis for Turbulent Boundary Layer Flows |
|
|
312 | (2) |
|
11.6 Combined Laminar and Turbulent Flow |
|
|
314 | (6) |
|
11.6.1 Skin Friction for Complete Surface |
|
|
314 | (1) |
|
11.6.2 Momentum Thickness-Based Approach |
|
|
315 | (2) |
|
11.6.3 Surface Roughness Effect |
|
|
317 | (1) |
|
11.6.4 Shape Factor (H) and Transition |
|
|
318 | (2) |
|
|
320 | (1) |
|
Chapter 12 Free Shear Flows |
|
|
321 | (16) |
|
|
321 | (1) |
|
|
322 | (6) |
|
12.2.1 Self-Preserving Jet |
|
|
325 | (1) |
|
|
325 | (1) |
|
|
326 | (2) |
|
|
328 | (4) |
|
|
329 | (3) |
|
|
332 | (3) |
|
|
335 | (2) |
|
Chapter 13 Wakes and Separated Flows |
|
|
337 | (38) |
|
13.1 Separation and Wake Shear Layers |
|
|
337 | (1) |
|
13.2 Laminar Flow (dp/dx 0) and Separation Location Prediction |
|
|
337 | (5) |
|
|
342 | (18) |
|
13.3.1 Drag over Cylindrical Objects |
|
|
344 | (2) |
|
13.3.2 D'Alembert's Paradox |
|
|
346 | (1) |
|
13.3.3 Vortex Shedding Frequencies |
|
|
347 | (2) |
|
|
349 | (6) |
|
13.3.5 Drag over Some Other 3D Objects |
|
|
355 | (1) |
|
13.3.6 Drag Measurements in Wind Tunnel |
|
|
356 | (3) |
|
13.3.7 Drag Estimation Using Wake Parameters |
|
|
359 | (1) |
|
|
360 | (7) |
|
|
364 | (3) |
|
13.5 Boundary Layer Control |
|
|
367 | (5) |
|
|
372 | (3) |
|
Chapter 14 Waves and Tsunamis |
|
|
375 | (24) |
|
|
375 | (5) |
|
14.2 Pressure on the Surface |
|
|
380 | (5) |
|
14.3 Absolute Velocity Components |
|
|
385 | (2) |
|
|
387 | (1) |
|
14.5 The Wave Kinetic Energy |
|
|
388 | (1) |
|
14.6 Rate of Energy of Wave |
|
|
389 | (2) |
|
14.7 Drag in Oscillatory Flows |
|
|
391 | (3) |
|
|
394 | (1) |
|
|
395 | (3) |
|
|
398 | (1) |
|
|
399 | (18) |
|
15.1 The Dimensionless Parameters |
|
|
400 | (1) |
|
15.2 Energy Gradient Line |
|
|
401 | (2) |
|
15.3 Pressure Loss in Open Channel Flows |
|
|
403 | (3) |
|
15.4 Best Hydraulic Cross-Section |
|
|
406 | (1) |
|
|
407 | (6) |
|
|
413 | (3) |
|
|
413 | (3) |
|
|
416 | (1) |
|
Chapter 16 Compressible Flows |
|
|
417 | (52) |
|
16.1 Movement of Small Pressure Disturbance |
|
|
417 | (6) |
|
16.2 Movement of Large Disturbance in Flow |
|
|
423 | (2) |
|
|
425 | (1) |
|
16.4 Compressible Flow Mass, Momentum, and Enthalpy Balance |
|
|
425 | (4) |
|
16.5 One-Dimensional Isentropic Flow |
|
|
429 | (7) |
|
|
436 | (1) |
|
|
437 | (5) |
|
16.7.1 Entropy Rise across Shockwave |
|
|
441 | (1) |
|
16.8 Pitot-Tube Correction for Compressible Flows |
|
|
442 | (3) |
|
16.9 Flow through Converging-Diverging Nozzle |
|
|
445 | (2) |
|
|
447 | (5) |
|
|
448 | (1) |
|
|
448 | (4) |
|
16.11 Frictional Flow in a Constant Area Duct |
|
|
452 | (9) |
|
16.11.1 Fanno Line Flow Equations |
|
|
454 | (7) |
|
16.12 Flow in Constant Area Duct with Heat Transfer |
|
|
461 | (7) |
|
|
468 | (1) |
|
Chapter 17 Turbomachinery |
|
|
469 | (38) |
|
17.1 Dimensional Analysis and Relevant Pi-Groups |
|
|
469 | (2) |
|
|
471 | (1) |
|
17.3 Euler's Turbomachinery Equation |
|
|
472 | (2) |
|
17.4 The Centrifugal Pump |
|
|
474 | (1) |
|
17.5 Pump Characteristic Curve |
|
|
475 | (3) |
|
|
478 | (1) |
|
17.6.1 Shift in Pump Operation Curve |
|
|
478 | (1) |
|
|
479 | (2) |
|
17.8 The Phenomenon of Cavitation |
|
|
481 | (5) |
|
17.9 Net Positive Suction Head (NPSH) |
|
|
486 | (3) |
|
|
489 | (10) |
|
|
491 | (4) |
|
17.10.2 Reaction Turbines |
|
|
495 | (4) |
|
17.11 Cavitation in Hydraulic Turbines |
|
|
499 | (3) |
|
|
501 | (1) |
|
17.12 Axial Flow Wind Turbines |
|
|
502 | (3) |
|
|
505 | (2) |
Index |
|
507 | |