Muutke küpsiste eelistusi
  • Formaat - EPUB+DRM
  • Hind: 136,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Fluid Mechanics: A Problem-Solving Approach provides a clear distinction between integral formulation and the different formulation of conservation law.

Including a detailed discussion on pipe flow correlations, entrance length correlations, and plotting of Moody diagram, the book works through the comprehensive coverage of fluid mechanics with a gradual introduction of theory in a straightforward, practical approach. The book includes numerous end-of-chapter problems to enhance student understanding and different solving approaches. It features coverage of nanofluids and chapters on jets, waves in ocean and rivers, boundary layer separation, and Thwaites integral method, which are not typically covered in an introductory course.

Features





Provides a comprehensive treatment of fluid mechanics from the basic concepts to in-depth application problems.





Covers waves and tsunamis.





Offers two distinct chapters on jet flows and turbulent flows.





Includes numerous end-of-chapter problems.





Includes a Solutions Manual and MAPLE worksheets for instructor use.

The book is intended for senior undergraduate mechanical and civil engineering students taking courses in fluid mechanics.

The eBook+ version includes the following enhancements:











3 videos placed throughout the text to help apply real-world examples to concepts of Newtonian vs. Non-Newtonian fluids, vortices, and additional information on surface tension.





Pop-up explanations of selected concepts as interactive flashcards in each chapter.





Quizzes within chapters to help readers refresh their knowledge.
Nomenclature xv
Author xxv
Preface xxvii
Chapter 1 Introduction
1(34)
1.1 Continuum Hypothesis
1(3)
1.2 Fluid Properties
4(1)
1.3 Density
5(2)
1.4 Compressibility
7(1)
1.5 Coefficient of Volume Expansion
7(2)
1.6 Specific Heat
9(1)
1.7 Viscosity
9(4)
1.8 Newtonian and Non-Newtonian Fluids
13(5)
1.9 Surface Energy and Surface Tension
18(8)
1.9.1 Jurin's Law
22(4)
1.10 Nanofluids
26(2)
1.11 An Overview of Fluid Analysis Types
28(6)
1.11.1 Viscous vs. Inviscid Flow
28(1)
1.11.2 Steady vs. Unsteady Flow
29(1)
1.11.3 Uniform Flow
29(1)
1.11.4 Wall-Bounded vs. Free-Shear Flow
29(1)
1.11.5 One-, Two-, and Three-Dimensional Flow
29(1)
1.11.6 Compressible vs. Incompressible Flow
30(4)
References
34(1)
Chapter 2 Pressure and Stationary Fluid
35(28)
2.1 Pressure in Stationary Fluid
35(1)
2.2 Hydrostatics
36(3)
2.3 Pressure Units
39(3)
2.4 Manometry
42(3)
2.5 Atmospheric Air Pressure
45(4)
2.6 Static Liquid Force on an Inclined Surface
49(4)
2.7 Normal Stresses in Static Fluid
53(1)
2.8 Bouyancy Force in Fluid
53(3)
2.9 Stability of Floating Objects
56(5)
References
61(2)
Chapter 3 Kinematics of Fluid Particle
63(20)
3.1 Lagrangian and Eulerian Descriptions of Flow field
63(2)
3.2 Acceleration in Fluid
65(2)
3.3 Deformation of Fluid Particle
67(6)
3.3.1 Shear Strain
69(1)
3.3.2 Extensional Strain
70(3)
3.4 Movement of Fluid Particle
73(8)
3.4.1 Pathlines
73(8)
Reference
81(2)
Chapter 4 Differential Formulation of Conservation Laws
83(14)
4.1 Continuity Equation
83(2)
4.2 The Navier-Stokes Equations
85(5)
4.2.1 Acceleration in Fluid
85(1)
4.2.2 Balance of Forces
85(3)
4.2.3 Constitutive Relations
88(1)
4.2.4 Differential Formulation
89(1)
4.3 Vectors, Tensors, and Conservation Laws
90(5)
References
95(2)
Chapter 5 Dimensional Analysis and Similitude
97(22)
5.1 Vaschy-Buckingham Pi Theorem
98(4)
5.1.1 Limitations
102(1)
5.2 Other Approaches for Dimensionless Numbers
102(6)
5.2.1 Balance of Forces
102(4)
5.2.2 Ratio of Velocities
106(1)
5.2.3 Ratio of Lengths
106(1)
5.2.4 Ratio of Masses
107(1)
5.2.5 Ratio of Dimensionless Numbers
107(1)
5.2.6 Scale Analysis
108(1)
5.3 Similitude
108(9)
References
117(2)
Chapter 6 The Integral Analysis
119(38)
6.1 Integral Formulation of Continuity Equation
119(5)
6.2 Stream Tube Theory
124(1)
6.3 Energy Equation
125(1)
6.4 Lumped Energy Analysis
125(2)
6.5 Bernoulli Equation
127(5)
6.6 Torricelli Theorem and Orifice Losses
132(7)
6.7 Pitot-Static Tube
139(2)
6.8 Determination of Flow Rates through Venturimeter
141(2)
6.9 Extended Bernoulli Equation
143(3)
6.10 Estimation of Forces
146(9)
6.10.1 Integral Formulation of Momentum Equation
146(1)
6.10.2 Jet's Force on the Moving Plate
146(2)
6.10.3 Rocket Thrust
148(7)
Reference
155(2)
Chapter 7 Irrotational Flow
157(36)
7.1 Concept of Stream Function (\ff)
157(3)
7.1.1 Equation of Streamlines
158(2)
7.2 Potential Function
160(1)
7.3 Flow Net
161(1)
7.4 Uniform Flow
162(1)
7.5 Potential Vortex Circulation
163(4)
7.6 Circulation and Inviscid Vortex
167(3)
7.7 Circulation in Free Vortex
170(1)
7.8 Source or Sink
171(1)
7.9 Superposition: Rankine Half Body
171(5)
7.10 Superposition: Source and Sink Nearby
176(1)
7.11 Superposition: Source + Sink + Uniform Flow
177(1)
7.12 Doublet
178(2)
7.13 Flow About a Circular Cylinder
180(3)
7.14 Flow along a Spinning Cylinder
183(2)
7.15 Magnus Effect
185(1)
7.16 Corner Flow
185(6)
References
191(2)
Chapter 8 Laminar Flows
193(30)
8.1 Flow between Parallel Plates
193(3)
8.2 Flow between Plates with One Plate Moving
196(3)
8.3 Hagen-Poiseuille Flow
199(6)
8.4 Starting Flow in a Pipe
205(5)
8.5 Stoke's First Problem
210(4)
8.6 Flow in an Annulus
214(7)
References
221(2)
Chapter 9 Introduction to Turbulent Flows
223(26)
9.1 What is Turbulence?
223(1)
9.2 The Law of the Wall
224(3)
9.2.1 The Viscous Sublayer
225(1)
9.2.2 The Buffer Zone or Transition Zone
226(1)
9.2.3 The Outer Layer
227(1)
9.3 Is There a Single Equation Available?
227(3)
9.4 Reynolds Averaging
230(8)
9.4.1 Reynolds Averaged Navier-Stokes Equations
231(4)
9.4.2 Single Point Statistics
235(1)
9.4.2.1 Correlations
235(1)
9.4.2.2 Energy Spectrum
236(2)
9.5 Turbulent Fluctuations
238(2)
9.6 Turbulence Simulations
240(2)
9.6.1 Flow through Square Duct
241(1)
9.7 Laminar-to-Turbulent Transition
242(5)
References
247(2)
Chapter 10 Viscous Flow through Conduits
249(46)
10.1 Laminar and Turbulent Diffusion
249(4)
10.2 Noncircular Conduits
253(1)
10.3 Entrance Length in Laminar Flows
253(2)
10.4 Friction in the Laminar Hydrodynamic Entry Length
255(4)
10.5 Entrance Length in Turbulent Flows
259(2)
10.6 The Darcy-Weisbach Empirical Equation
261(1)
10.7 Smooth Pipe's Darcy Friction Factors
261(4)
10.8 Darcy Friction Factors for Rough Pipes
265(5)
10.9 Fully Developed Turbulent Velocity Profile in Pipes
270(1)
10.10 Extended Bernoulli's Equation in Pipe Network
270(3)
10.11 Minor Losses
273(8)
10.11.1 Entrance Losses
274(2)
10.11.2 Pressure Loss in Abrupt Contraction
276(1)
10.11.3 Pressure Loss in Sudden Enlargement
277(2)
10.11.4 Gradual Enlargement
279(1)
10.11.5 Flow-through Bends and Valves
279(1)
10.11.6 Flow-through Orifice
279(2)
10.12 Pipes in Series and in Parallel
281(6)
10.13 Similitude Considerations
287(1)
10.14 Pressure Loss in a Coiled Tube
288(5)
References
293(2)
Chapter 11 External Boundary Layer Flows
295(26)
11.1 Order of Magnitude or Scale Analysis
297(2)
11.2 Blasius Solution for Laminar External Flows
299(3)
11.3 Integral Analysis for External Boundary Layer Flows
302(6)
11.4 Laminar Flow without Pressure Gradient
308(4)
11.5 Integral Analysis for Turbulent Boundary Layer Flows
312(2)
11.6 Combined Laminar and Turbulent Flow
314(6)
11.6.1 Skin Friction for Complete Surface
314(1)
11.6.2 Momentum Thickness-Based Approach
315(2)
11.6.3 Surface Roughness Effect
317(1)
11.6.4 Shape Factor (H) and Transition
318(2)
References
320(1)
Chapter 12 Free Shear Flows
321(16)
12.1 Free Jet
321(1)
12.2 2D Laminar Free Jet
322(6)
12.2.1 Self-Preserving Jet
325(1)
12.2.2 Jet's Half Width
325(1)
12.2.3 Jet Modes
326(2)
12.3 Impinging Jet
328(4)
12.3.1 HiemenzFlow
329(3)
12.4 Synthetic Jets
332(3)
References
335(2)
Chapter 13 Wakes and Separated Flows
337(38)
13.1 Separation and Wake Shear Layers
337(1)
13.2 Laminar Flow (dp/dx 0) and Separation Location Prediction
337(5)
13.3 Drag in Fluid
342(18)
13.3.1 Drag over Cylindrical Objects
344(2)
13.3.2 D'Alembert's Paradox
346(1)
13.3.3 Vortex Shedding Frequencies
347(2)
13.3.4 Drag over Sphere
349(6)
13.3.5 Drag over Some Other 3D Objects
355(1)
13.3.6 Drag Measurements in Wind Tunnel
356(3)
13.3.7 Drag Estimation Using Wake Parameters
359(1)
13.4 Forces over Airfoil
360(7)
13.4.1 Separation Bubble
364(3)
13.5 Boundary Layer Control
367(5)
References
372(3)
Chapter 14 Waves and Tsunamis
375(24)
14.1 Oscillatory Waves
375(5)
14.2 Pressure on the Surface
380(5)
14.3 Absolute Velocity Components
385(2)
14.4 Wave Movement
387(1)
14.5 The Wave Kinetic Energy
388(1)
14.6 Rate of Energy of Wave
389(2)
14.7 Drag in Oscillatory Flows
391(3)
14.8 Ship Resistance
394(1)
14.9 Tsunami
395(3)
References
398(1)
Chapter 15 Channel Flow
399(18)
15.1 The Dimensionless Parameters
400(1)
15.2 Energy Gradient Line
401(2)
15.3 Pressure Loss in Open Channel Flows
403(3)
15.4 Best Hydraulic Cross-Section
406(1)
15.5 Hydraulic Jump
407(6)
15.6 Wiers
413(3)
15.6.1 Rectangular Wier
413(3)
References
416(1)
Chapter 16 Compressible Flows
417(52)
16.1 Movement of Small Pressure Disturbance
417(6)
16.2 Movement of Large Disturbance in Flow
423(2)
16.3 Above Earth
425(1)
16.4 Compressible Flow Mass, Momentum, and Enthalpy Balance
425(4)
16.5 One-Dimensional Isentropic Flow
429(7)
16.6 Converging Nozzle
436(1)
16.7 Normal Shockwaves
437(5)
16.7.1 Entropy Rise across Shockwave
441(1)
16.8 Pitot-Tube Correction for Compressible Flows
442(3)
16.9 Flow through Converging-Diverging Nozzle
445(2)
16.10 Oblique Shockwaves
447(5)
16.10.1 MachCone
448(1)
16.10.2 Detached Shock
448(4)
16.11 Frictional Flow in a Constant Area Duct
452(9)
16.11.1 Fanno Line Flow Equations
454(7)
16.12 Flow in Constant Area Duct with Heat Transfer
461(7)
References
468(1)
Chapter 17 Turbomachinery
469(38)
17.1 Dimensional Analysis and Relevant Pi-Groups
469(2)
17.2 Classification
471(1)
17.3 Euler's Turbomachinery Equation
472(2)
17.4 The Centrifugal Pump
474(1)
17.5 Pump Characteristic Curve
475(3)
17.6 Real Head Curve
478(1)
17.6.1 Shift in Pump Operation Curve
478(1)
17.7 Pump Affinity Laws
479(2)
17.8 The Phenomenon of Cavitation
481(5)
17.9 Net Positive Suction Head (NPSH)
486(3)
17.10 Hydraulic Turbines
489(10)
17.10.1 Impulse Turbines
491(4)
17.10.2 Reaction Turbines
495(4)
17.11 Cavitation in Hydraulic Turbines
499(3)
17.11.1 Draft Tube
501(1)
17.12 Axial Flow Wind Turbines
502(3)
References
505(2)
Index 507
Dr.-Ing. Naseem Uddin, CEng MIMechE, MIEAust CPENG, earned his PhD in aerospace engineering from Universität Stuttgart, Germany in 2008. He is a Senior Assistant Professor in the Mechanical Engineering Programme, Universiti Teknologi Brunei, Brunei (UTB), Brunei Darussalam. Previously, he worked as a full professor at NED University of Engineering and Technology, Pakistan from 2010-2019. Dr. Naseem is a registered chartered engineer with Engineers Australia and the Institution of Mechanical Engineers, UK. He is also listed in the National Engineering Register (NER) of Australia and recognized as a professional engineer by the board of professional engineers of Queensland, Australia and by the Pakistan Engineering Council. He is a member of the American Society of Mechanical Engineers (ASME), US. He teaches fluid mechanics to both graduate and undergraduate students at UTB, and his research interests are in the areas of heat transfer and computational turbulence.