Muutke küpsiste eelistusi

E-raamat: Fluvial Hydrodynamics: Hydrodynamic and Sediment Transport Phenomena

  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The state-of-the-art in fluvial hydrodynamics can be examined only through a careful exploration of the theoretical development and applied engineering technology. The book is primarily focused, since most up-to-date research findings in the field are presented, on the research aspects that involve a comprehensive knowledge of sediment dynamics in turbulent flows. It begins with the fundamentals of hydrodynamics and particle motion followed by turbulence characteristics related to sediment motion. Then, the sediment dynamics is analysed from a classical perspective by applying the mean bed shear approach and additionally incorporating a statistical description for the role of turbulence. The work finally examines the local scour problems at hydraulic structures and scale models. It is intended to design as a course textbook in graduate / research level and a guide for the field engineers as well, keeping up with modern technological developments. Therefore, as a simple prerequisite, the background of the readers should have a basic knowledge in hydraulics in undergraduate level and an understanding of fundamentals of calculus.



This book incorporates theoretical development and applied technology to examine sediment dynamics in turbulent flows, hydrodynamics and particle motion, characteristics of sediment motion, and local scour problems in hydraulic structures and scale models.
1 Introduction
1(28)
1.1 General
1(2)
1.2 Scope of this Book
3(1)
1.3 Coverage of this Book
3(1)
1.4 Physical Properties of Fluid and Sediment
4(6)
1.4.1 Mass Densities of Fluid and Sediment
4(1)
1.4.2 Specific Weights of Fluid and Sediment
5(1)
1.4.3 Relative Densities of Fluid and Sediment
5(1)
1.4.4 Viscosity of Fluid
6(1)
1.4.5 Size of a Sediment Particle
7(2)
1.4.6 Shape of a Sediment Particle
9(1)
1.5 Properties of Sediment Mixture
10(4)
1.5.1 Size Distribution
10(2)
1.5.2 Porosity, Void Ratio, Dry Mass Density, and Dry Specific Weight
12(1)
1.5.3 Angle of Repose
13(1)
1.6 Properties of Fluid and Suspended Sediment Mixture
14(2)
1.7 Terminal Fall Velocity of Sediment in Fluid
16(5)
1.7.1 Terminal Fall Velocity of a Spherical Particle
16(2)
1.7.2 Terminal Fall Velocity of Sediment Particles
18(3)
1.8 Examples
21(8)
References
26(3)
2 Hydrodynamic Principles
29(66)
2.1 General
29(3)
2.2 Rates of Deformation
32(3)
2.3 Conservation of Mass
35(6)
2.3.1 Continuity Equation in Three Dimensions
37(2)
2.3.2 Continuity Equation for Open-Channel Flow
39(2)
2.4 Conservation of Momentum
41(13)
2.4.1 Momentum Equation in Three Dimensions
43(5)
2.4.2 Momentum Equation for Open-Channel Flow
48(6)
2.5 Conservation of Energy
54(11)
2.5.1 Energy Equation for Open-Channel Flow
56(9)
2.6 The Boundary Layer
65(9)
2.6.1 Characteristics of Boundary Layer
66(3)
2.6.2 Von Karman Momentum Integral Equation
69(5)
2.7 Flow in Curved Channels
74(7)
2.7.1 Superelevation in Curved Channels
77(1)
2.7.2 Velocity Distributions in Curved Channels
77(3)
2.7.3 Bed Shear Stress Distribution in Curved Channels
80(1)
2.8 Hydrodynamic Drag and Lift on a Particle
81(4)
2.8.1 The Drag
81(3)
2.8.2 The Lift
84(1)
2.9 Appendix
85(2)
2.9.1 Navier--Stokes and Continuity Equations in a Cylindrical Polar Coordinate System
85(1)
2.9.2 Navier-Stokes and Continuity Equations in a Spherical Polar Coordinate System
86(1)
2.10 Examples
87(8)
References
93(2)
3 Turbulence in Open-Channel Flows
95(94)
3.1 General
95(1)
3.2 Decomposition and Averaging Procedure
96(2)
3.3 Continuity Equation
98(1)
3.4 Equation of Motion (Reynolds Equations)
99(4)
3.4.1 Shear Stress in Steady-Uniform Flow in an Open Channel
101(2)
3.5 Classical Turbulence Theories
103(3)
3.5.1 Prandtl's Mixing Length Theory
103(3)
3.5.2 Similarity Hypothesis of von Karman
106(1)
3.6 Classification of Flow Field in Open Channels
106(2)
3.7 Velocity Distribution
108(10)
3.7.1 The Linear Law in Viscous Sublayer
109(1)
3.7.2 The Logarithmic Law in Turbulent Wall Shear Layer
109(6)
3.7.3 Law in Buffer Layer
115(1)
3.7.4 Log-Wake Law and Velocity Defect Law
116(2)
3.8 Turbulence Intensity
118(1)
3.9 Bed Shear Stress
119(12)
3.9.1 Bed Shear Stress from Bed Slope
120(1)
3.9.2 Bed Shear Stress from Velocity Distribution
120(1)
3.9.3 Bed Shear Stress from Average Velocity
121(1)
3.9.4 Bed Shear Stress from Reynolds Shear Stress Distribution
122(1)
3.9.5 Bed Shear Stress from Turbulent Kinetic Energy Distribution
123(1)
3.9.6 Bed Shear Stress from Spectral Density Function
124(1)
3.9.7 Bed Shear Stress from Vertical Reynolds Normal Stress Distribution
124(1)
3.9.8 Bed Shear Stress and Reynolds Shear Stress for Unsteady-Nonuniform Flow: Dey--Lambert's Approach
125(6)
3.10 Secondary Currents and Dip Phenomenon
131(6)
3.10.1 Secondary Currents
131(2)
3.10.2 Dip Phenomenon
133(4)
3.11 Isotropic Turbulence Theory
137(9)
3.11.1 Energy Cascade Process
137(1)
3.11.2 Integral Scale
137(2)
3.11.3 Kolmogorov Hypotheses
139(3)
3.11.4 Taylor Micro-Scale
142(1)
3.11.5 Transformation of Length Scale to Wave Number
143(1)
3.11.6 Spectrum Function
143(3)
3.12 Anisotropy in Turbulence
146(2)
3.13 Higher-Order Correlations
148(2)
3.14 Turbulent Kinetic Energy Flux
150(1)
3.15 Turbulent Kinetic Energy Budget
151(4)
3.16 Concept of Burst
155(7)
3.16.1 Coherent Structures and Burst
156(2)
3.16.2 Quadrant Analysis
158(4)
3.17 Probability Distributions of Turbulence
162(10)
3.17.1 Bose--Dey Universal Probability Theory
162(10)
3.18 Double-Averaging Concept
172(8)
3.19 Example
180(9)
References
183(6)
4 Sediment Threshold
189(72)
4.1 General
189(1)
4.2 Definition of Sediment Threshold
190(1)
4.3 Threshold Velocity Concept
191(5)
4.3.1 Yang's Threshold Velocity Model
194(2)
4.4 Lift Force Concept
196(2)
4.5 Threshold Bed Shear Stress Concept
198(32)
4.5.1 Empirical Equations
198(1)
4.5.2 Semitheoretical Analyses
199(25)
4.5.3 Threshold Bed Shear Stress on Sloping Beds
224(6)
4.6 Probabilistic Concept of Entrainment
230(9)
4.6.1 Gessler's Approach
231(1)
4.6.2 Grass's Approach
232(1)
4.6.3 Wu and Chou's Approach
233(5)
4.6.4 Other Investigations
238(1)
4.7 Turbulence-Induced Entrainment Concept
239(4)
4.8 Threshold of Nonuniform Sediment Motion
243(2)
4.9 Stable Channel Design
245(6)
4.9.1 Straight Trapezoidal Channels
245(1)
4.9.2 Stable-Ideal Section of a Threshold Channel
246(5)
4.10 Examples
251(10)
References
254(7)
5 Bed-Load Transport
261(66)
5.1 General
261(2)
5.2 Definition of Bed-Load Transport
263(1)
5.3 Bed Shear Stress Concept for Bed-Load Transport
264(8)
5.3.1 Du Boys' Approach
264(2)
5.3.2 Du Boys Type Equations
266(4)
5.3.3 Other Empirical Relationships Involving Bed Shear Stress
270(2)
5.4 Discharge Concept for Bed-Load Transport
272(1)
5.5 Velocity Concept for Bed-Load Transport
272(1)
5.6 Bedform Concept for Bed-Load Transport
273(1)
5.7 Probabilistic Concept for Bed-Load Transport
274(11)
5.7.1 Einstein's Approach
274(6)
5.7.2 Empirical Refinement of Einstein Formula
280(1)
5.7.3 Modified Einstein's Approach
281(2)
5.7.4 Engelund and Fredsøe's Approach
283(2)
5.8 Deterministic Concept for Bed-Load Transport
285(7)
5.8.1 Bagnold's Approach
285(4)
5.8.2 Yalin's Approach
289(3)
5.9 Equal Mobility Concept for Bed-Load Transport
292(1)
5.10 Sediment Pickup Function
292(2)
5.11 Saltation
294(5)
5.11.1 Characteristics of Saltation
294(1)
5.11.2 Particle Trajectory and Characteristic Parameters (van Rijn's Approach)
295(4)
5.12 Fractional Bed Load of Nonuniform Sediments
299(4)
5.13 Sediment Sorting and Streambed Armoring
303(2)
5.14 Sediment Entrainment Probability to Bed Load
305(4)
5.15 Effects of Bed Load on Velocity Distribution
309(3)
5.16 Effects of Bed Load on Length Scales of Turbulence
312(3)
5.17 Effects of Bed Load on von Karman Constant κ
315(2)
5.18 Examples
317(10)
References
322(5)
6 Suspended-Load Transport
327(90)
6.1 General
327(1)
6.2 Diffusion Concept
328(45)
6.2.1 Background
328(1)
6.2.2 Generalized Advection--Diffusion Equation of Suspended Sediment Motion
329(4)
6.2.3 Governing Equation of Vertical Distribution of Sediment Concentration
333(3)
6.2.4 Distribution of Sediment Concentration
336(16)
6.2.5 Stratification Effects on Concentration Distribution
352(2)
6.2.6 Nonequilibrium Sediment Concentration Distribution
354(2)
6.2.7 Vertical Distribution of Sediment Concentration Due to Nonuniform Streamwise Variation of Concentration
356(3)
6.2.8 Reference Level and Reference Concentration
359(3)
6.2.9 Suspended Load by Diffusion Approach
362(11)
6.3 Energy Concept
373(7)
6.3.1 Velikanov's Approach
373(4)
6.3.2 Bagnold's Approach
377(2)
6.3.3 Wu et al.'s Approach
379(1)
6.4 Threshold Condition for Sediment Suspension
380(6)
6.4.1 Cheng and Chiew's Probabilistic Approach
381(1)
6.4.2 Bose and Dey's Probabilistic Approach
382(4)
6.5 Effects of Suspended Load on Bed-Load Transport
386(1)
6.6 Effects of Suspended Load on Velocity Distribution
387(7)
6.6.1 Einstein and Chien's Contribution
388(1)
6.6.2 Umeyama and Gerritsen's Contribution
389(1)
6.6.3 Castro-Orgaz et al.'s Contribution
389(5)
6.7 Effects of Suspended Load on von Karman Constant K
394(3)
6.8 Effects of Sediment Suspension on Turbulence Characteristics
397(5)
6.8.1 Effects on Turbulent Stresses
397(2)
6.8.2 Response of Turbulent Bursting to Sediment Suspension
399(3)
6.9 Wash Load
402(2)
6.10 Examples
404(13)
References
410(7)
7 Total-Load Transport
417(36)
7.1 General
417(1)
7.2 Indirect Approach
418(7)
7.2.1 Einstein's Approach
418(1)
7.2.2 Modified Einstein Procedure
419(5)
7.2.3 Bagnold's Approach
424(1)
7.2.4 Chang et al.'s Approach
425(1)
7.3 Direct Approach
425(11)
7.3.1 Laursen's Approach
425(1)
7.3.2 Bishop et al.'s Approach
426(1)
7.3.3 Engelund and Hansen's Approach
427(2)
7.3.4 Graf and Acaroglu's Approach
429(1)
7.3.5 Ackers and White's Approach
430(1)
7.3.6 Yang's Approach
431(1)
7.3.7 Brownlie's Approach
432(1)
7.3.8 Karim and Kennedy's Approach
433(2)
7.3.9 Molinas and Wu's Approach
435(1)
7.3.10 Yang and Lim's Approach
435(1)
7.3.11 Sinnakaudan et al.'s Approach
436(1)
7.4 Total-Load Transport of Nonuniform Sediments
436(1)
7.5 Examples
437(16)
References
451(2)
8 Bedforms
453(76)
8.1 General
453(1)
8.2 Bedforms
454(13)
8.2.1 Ripples
454(4)
8.2.2 Dunes
458(7)
8.2.3 Transition and Plane Bed
465(1)
8.2.4 Antidunes
465(1)
8.2.5 Chutes and Pools
466(1)
8.3 Bars
467(1)
8.4 Prediction of Bedforms
468(6)
8.5 Mathematical Developments
474(31)
8.5.1 Exner's Model
474(2)
8.5.2 Kinematic Model
476(4)
8.5.3 Potential Flow Model
480(11)
8.5.4 Bose--Dey Instability Theory
491(14)
8.6 Bed Features in Gravel-Bed Streams
505(3)
8.7 Resistance to Flow Due to Bedforms
508(11)
8.7.1 Einstein and Barbarossa's Method
511(1)
8.7.2 Engelund's Method
512(2)
8.7.3 Karim and Kennedy's Method
514(1)
8.7.4 Van Rijn's Method
515(1)
8.7.5 Nelson and Smith's Method
516(1)
8.7.6 Wright and Parker's Method
517(2)
8.8 Examples
519(10)
References
525(4)
9 Fluvial Processes: Meandering and Braiding
529(34)
9.1 General
529(5)
9.2 Meandering Rivers
534(8)
9.2.1 Meander Planform Characteristics
539(1)
9.2.2 Concepts of Meandering
539(3)
9.3 Mathematical Modeling of Meandering Rivers
542(13)
9.3.1 Ikeda and Nishimura's Model
542(7)
9.3.2 Odgaard's Model
549(6)
9.4 Braided Rivers
555(8)
9.4.1 Mechanism of Braid Formation
556(4)
References
560(3)
10 Scour
563(78)
10.1 General
563(1)
10.2 Scour Within Channel Contractions
564(9)
10.2.1 Laursen's Model
565(2)
10.2.2 Dey and Raikar's Model
567(2)
10.2.3 Maximum Scour Depth Prediction
569(2)
10.2.4 Other Scour Depth Predictors
571(2)
10.3 Scour Downstream of Structures
573(8)
10.3.1 Scour Below Drop Structures
573(3)
10.3.2 Scour Downstream of Grade-Control Structures
576(1)
10.3.3 Scour Downstream of Bed Sills
576(3)
10.3.4 Scour Due to Horizontal Jets Issuing from a Gate Opening
579(2)
10.4 Scour Below Horizontal Pipelines
581(8)
10.4.1 Estimation of Gap Discharge
584(2)
10.4.2 Scour Depth Estimation
586(3)
10.5 Scour at Bridge Piers
589(13)
10.5.1 Kinematic Model of Horseshoe Vortex
592(2)
10.5.2 Scour Depth Prediction
594(8)
10.6 Scour at Bridge Abutments
602(6)
10.6.1 Scour Depth Prediction
605(3)
10.7 Scour Countermeasures
608(4)
10.8 Appendix
612(7)
10.8.1 Submerged Wall Jets
612(5)
10.8.2 Computation of Scour Due to Submerged Wall Jets
617(2)
10.9 Examples
619(22)
References
635(6)
11 Dimensional Analysis and Similitude
641(28)
11.1 General
641(2)
11.2 Dimensional Analysis
643(8)
11.2.1 Synthesis of Experimental Data
643(2)
11.2.2 Dimensional System
645(1)
11.2.3 Buckingham Π Theorem
646(2)
11.2.4 Steps Involved in Analysis by Π Theorem
648(3)
11.3 Similitude
651(10)
11.3.1 Concept of Dynamic Similitude for Model Studies
651(5)
11.3.2 Immobile Bed Model Studies
656(2)
11.3.3 Mobile Bed Model Studies
658(3)
11.4 Examples
661(8)
References
667(2)
About the Author 669(2)
Author Index 671(10)
Subject Index 681