Muutke küpsiste eelistusi

E-raamat: FMCW Radar Design

  • Formaat: 430 pages
  • Ilmumisaeg: 31-Jan-2018
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781630815691
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 129,87 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 430 pages
  • Ilmumisaeg: 31-Jan-2018
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781630815691
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Frequency Modulated Continuous Wave (FMCW) radars are a fast expanding area in radar technology due to their stealth features, extremely high resolutions, and relatively clutter free displays. This groundbreaking resource offers engineers expert guidance in designing narrowband FMCW radars for surveillance, navigation, and missile seeking. It also provides professionals with a thorough understanding of underpinnings of this burgeoning technology. Moreover, readers find detailed coverage of the RF components that form the basis of radar construction. Featuring clear examples, the book presents critical discussions on key applications.

Practitioners learn how to use time-saving MATLAB® and SystemVue design software to help them with their challenging projects in the field. Additionally, this authoritative reference shows engineers how to analyze FMCW radars of various types, including missile seekers and missile altimeters. Packed with over 600 equations, the book presents discussions on key radar algorithms and their implementation, as well as designing modern radar to meet given operational requirements.

Arvustused

This worthwhile book is a general radar text discussing many aspects of radar design, with emphasis on practical issues. The special coverage of FMCW stems from the author's long defense experience. Recent interest in automotive radars, most of which utilize Linear FMCW, enhances the value of the book. -- Nadav Levanon * Tel-Aviv University * Frequency Modulated Continuous Wave (FMCW) radars are a fast expanding area in radar technology due to their stealth features, extremely high resolutions, and relatively clutter free displays. This groundbreaking resource offers engineers expert guidance in designing narrowband FMCW radars for surveillance, navigation, and missile seeking. It also provides professionals with a thorough understanding of underpinnings of this burgeoning technology. Moreover, readers find detailed coverage of the RF components that form the basis of radar construction. Featuring clear examples, the book presents critical discussions on key applications * Stevo's Book Reviews *

Preface xv
Acknowledgments xvii
Part 1: Fundamentals of Low Probability of Intercept Radar Design 1(146)
Chapter 1 The Advent of FMCW Radars
3(16)
1.1 The Need for Stealth
3(1)
1.2 The Basic Requirements for LPI Capability
4(1)
1.3 Pseudo-LPI Radars
5(1)
1.4 CW Transmissions
5(1)
1.5 Radar Detection Range and Interception Range
6(6)
1.6 Radar Intercept Range
12(1)
1.7 Commercial LPI Radars: SQUIRE Battlefield Surveillance LPI Radar
12(2)
1.8 Miscellaneous Uses of LPI Radars
14(1)
1.8.1 Altimeters
14(1)
1.8.2 Landing Systems
15(1)
1.8.3 Train Radars
15(1)
1.9 A Survey of This Book
15(3)
References
18(1)
Chapter 2 FMCW Waveform
19(38)
2.1 Introduction
19(1)
2.2 FMCW
19(1)
2.3 LFM Waveforms
20(1)
2.4 Linear Sawtooth FMCW
20(9)
2.4.1 LFM Waveform
25(4)
2.5 Linear Triangular FMCW
29(2)
2.5.1 One Target
29(1)
2.5.2 Two Targets
29(2)
2.6 Segmented Linear FMCW
31(1)
2.7 Derivation of the Swept Bandwidth
31(1)
2.8 Calculating the Range
32(1)
2.9 Matched Filter
32(3)
2.10 Storing a Replica
35(1)
2.11 Time-Bandwidth Product
35(1)
2.12 Waveform Compression
36(13)
2.12.1 LFM Waveform Compression
37(1)
2.12.2 Correlation Processor
38(3)
2.12.3 Stretch Processor
41(8)
2.13 Sidelobes and Weighting for Linear FM Systems
49(1)
2.14 Basic Equations of FMCW Radars
49(2)
2.14.1 FMCW Equation
50(1)
2.15 FMCW Radar Range Equation Revisited
51(1)
2.16 Effect of Sweep Time on Range Resolution
51(2)
2.17 Concept of Instrumented Range
53(1)
2.18 Nonlinearity in FM Waveforms
53(2)
2.19 Coherent Processing Interval
55(1)
2.20 Summary
56(1)
References
56(1)
Chapter 3 The Radar Ambiguity Function
57(10)
3.1 Introduction
57(1)
3.2 Examples of Ambiguity Functions
58(6)
3.2.1 Single-Frequency Pulse
59(1)
3.2.2 Linear FM Pulse
60(4)
3.3 Range-Doppler Coupling
64(1)
3.4 Phase-Coded Signals
65(1)
References
65(2)
Chapter 4 Noise in Radar Receivers
67(20)
4.1 Introduction
67(1)
4.2 Noise Characterization
67(1)
4.2.1 Fundamentals
67(1)
4.2.2 Noise Bandwidth
68(1)
4.3 Sources of Noise
68(8)
4.3.1 Thermal Noise
68(1)
4.3.2 Resistor Noise Characteristics
69(2)
4.3.3 Shot Noise
71(1)
4.3.4 Flicker Noise
72(1)
4.3.5 White Noise
73(1)
4.3.6 Phase Noise
73(3)
4.3.7 Avalanche Noise
76(1)
4.3.8 Burst Noise
76(1)
4.4 Noise Figure
76(2)
4.5 Effective Noise Temperature
78(1)
4.6 The Noise Figure of Multistage Systems
78(2)
4.7 Noise Figure of Other Devices
80(1)
4.8 Noise Reduction Strategies
81(1)
4.9 Noise Figure Measurement
81(3)
4.9.1 Gain Method
81(1)
4.9.2 Y-Factor Method
82(2)
4.9.3 Noise Figure Meter
84(1)
4.10 Summary
84(1)
References
85(2)
Chapter 5 Radar Detection
87(60)
5.1 Introduction
87(1)
5.2 The Detection Problem
87(4)
5.2.1 Neyman-Pearson Theorem
88(3)
5.3 Noise Probability Density Functions
91(1)
5.4 Probability of False Alarm
92(1)
5.5 Probability of Detection
93(1)
5.6 The Matched Filter
94(6)
5.7 Matched Filter in Colored Noise
100(4)
5.8 The Correlation Receiver
104(2)
5.9 Fluctuating Targets
106(2)
5.10 Integration of Pulses
108(27)
5.10.1 Coherent Integration
110(13)
5.10.2 Noncoherent Integration
123(8)
5.10.3 Cumulative Detection Probability
131(4)
5.11 CFAR Processing
135(1)
5.12 Cell-Averaging CFAR
136(4)
5.13 Design of FMCW Marine Navigation Radar
140(4)
5.14 Summary
144(1)
References
145(2)
Part 2: Radar RF Hardware and Architecture 147(84)
Chapter 6 Radar System Components
149(34)
6.1 Introduction
149(1)
6.2 Amplifiers
149(1)
6.3 Types of Amplifiers
150(1)
6.4 Amplifier Characteristics
151(13)
6.4.1 1-dB Compression Point
151(1)
6.4.2 Intermodulation Products
152(2)
6.4.3 Dynamic Range and SFDR
154(4)
6.4.4 Gain Compression and Desensitization
158(2)
6.4.5 Single-Tone Modulation
160(1)
6.4.6 Two-Tone Intermodulation
161(1)
6.4.7 Cross-Modulation
162(1)
6.4.8 Nonlinearities in Power Amplifiers
163(1)
6.5 Mixers
164(15)
6.5.1 Down-Conversion
166(1)
6.5.2 Up-Conversion
167(1)
6.5.3 Mixer Specifications
167(1)
6.5.4 Mixer Intermodulation Products
168(1)
6.5.5 Mixer Properties
168(4)
6.5.6 Mixer Hardware Issues
172(3)
6.5.7 Mixer Types
175(4)
6.6 Synthesizer PLL Phase Noise
179(1)
6.7 What Is Phase Noise?
179(2)
6.8 Passive Components
181(1)
6.9 Summary
181(1)
References
182(1)
Chapter 7 Radar Transmitter/Receiver Architectures
183(48)
7.1 Introduction
183(1)
7.2 Receiver Architectures
183(17)
7.2.1 Single-Conversion Superheterodyne Receiver
183(3)
7.2.2 Dual-Conversion Superheterodyne Receiver
186(1)
7.2.3 Direct Conversion Receiver (Zero-IF)
187(6)
7.2.4 Hartley Architecture-Image-Reject Receiver
193(4)
7.2.5 Weaver Architecture
197(3)
7.2.6 Digital IF Receiver
200(1)
7.3 Analog-to-Digital Conversion
200(22)
7.3.1 Nyquist Sampling
201(4)
7.3.2 Bandpass Sampling
205(2)
7.3.3 Effects of Sampling Rate
207(1)
7.3.4 Bandpass Sampling Theorem
208(1)
7.3.5 Undersampling Techniques for Integer Bands
209(7)
7.3.6 Locations for Bandpass Sampling
216(5)
7.3.7 SNR of ADC for Bandpass Sampling
221(1)
7.4 Low-IF Receivers
222(2)
7.5 Receiver Signal Analysis
224(2)
7.6 Transmitter Architectures
226(4)
7.6.1 Direct Conversion Transmitter: Homodyne
226(3)
7.6.2 Transmitter Architecture: Heterodyne
229(1)
7.7 Summary
230(1)
References
230(1)
Part 3: FMCW Radar Signal Processing 231(40)
Chapter 8 Doppler Processing
233(38)
8.1 Introduction
233(1)
8.2 Doppler Frequency Shift
233(2)
8.3 Pulse-Frequency Spectrum
235(1)
8.4 Doppler Ambiguities
236(1)
8.4.1 Doppler Effect
237(1)
8.5 Radar Clutter
237(2)
8.6 PRF Trade-offs
239(1)
8.7 Pulse Compression
240(3)
8.8 Doppler Processing
243(1)
8.9 The Genesis of the MTI
244(3)
8.9.1 MTI
246(1)
8.10 MTI Technology
247(13)
8.10.1 Unambiguous Range
248(1)
8.10.2 Delay-Line Cancelers
249(4)
8.10.3 Doppler Ambiguities
253(1)
8.10.4 MTI Blind Phase
254(2)
8.10.5 MTI Improvement Factor
256(1)
8.10.6 MTI Cancelers
257(3)
8.11 Staggered PRFs
260(1)
8.12 Limitations of MTI Performance
261(1)
8.13 Digital MTI
262(1)
8.14 MTDs
262(4)
8.14.1 Pulse-Doppler Radars
262(1)
8.14.2 Difference Between MTI and PD Radars
263(2)
8.14.3 MTD Schematic
265(1)
8.15 Airport Surveillance Radar
266(3)
8.16 Summary
269(1)
References
270(1)
Part 4: FMCW Radar Design Tutorials 271(90)
Chapter 9 Design and Development of FMCW Battlefield Surveillance Radar
273(32)
9.1 Introduction
273(1)
9.2 Problem Statement
273(2)
9.3 Specifications Analysis
275(1)
9.4 Range Resolution
276(1)
9.5 Sweep Bandwidths
277(1)
9.6 Frequency of Radar Operation and Choice of Transmitter
277(1)
9.7 Sweep Repetition Interval
277(2)
9.8 Cell-Averaging CFAR
279(1)
9.9 Power Output Control
279(1)
9.10 IF Bandwidth
280(3)
9.11 Blanking
283(3)
9.12 Schematic Details (SystemVue)
286(3)
9.13 Performance Evaluation
289(2)
9.14 Signal Processing
291(2)
9.15 Range FFT
293(3)
9.16 Centroiding
296(1)
9.17 CFAR and Threshold
296(1)
9.18 Antenna
296(2)
9.19 In God We Trust, Rest We Track
298(6)
9.19.1 The Radar Tracker
298(1)
9.19.2 General Approach
299(1)
9.19.3 Plot to Track Association
300(1)
9.19.4 Track Initiation
300(1)
9.19.5 Track Maintenance
301(1)
9.19.6 Track Smoothing
301(1)
9.19.7 Alpha-Beta Tracker
301(1)
9.19.8 Kalman Filter
301(1)
9.19.9 Multiple Hypothesis Tracker
302(1)
9.19.10 Interacting Multiple Model
302(1)
9.19.11 Nonlinear Tracking Algorithms
302(1)
9.19.12 EKF
302(1)
9.19.13 UKF
303(1)
9.19.14 Particle Filter
303(1)
9.19.15 Commercial Tracking Software
303(1)
References
304(1)
Chapter 10 Design and Development of FMCW Marine Navigation Radar
305(20)
10.1 Introduction
305(1)
10.2 Problem Statement
305(1)
10.3 Product Description
306(2)
10.4 Specification Analysis
308(1)
10.5 Range Resolution
308(1)
10.6 Sweep Bandwidths
309(1)
10.7 Frequency of Radar Operation and Choice Of Transmitter
309(1)
10.8 Sweep Repetition Interval
309(2)
10.9 Selection of IF Filter Bandwidth
311(1)
10.10 Radar Clutter and Clutter Mapping
312(2)
10.11 Power Output
314(2)
10.12 Performance Evaluation
316(2)
10.13 Signal Processing
318(2)
10.14 Antenna
320(1)
10.15 Basic Guidelines in RF System Design Using SystemVue
321(2)
References
323(2)
Chapter 11 Antiship Missile Seeker
325(40)
11.1 Introduction
325(1)
11.2 System Specifications
325(1)
11.2.1 Main Operational Features
326(1)
11.2.2 Technical Specifications
326(1)
11.3 RBS15 Mk3 Guidance System
326(1)
11.4 Warhead and Propulsion of RBS15 Mk3 SSM
327(1)
11.5 Missile Altimeter
327(1)
11.6 Active Radar Seeker
327(1)
11.7 Seeker Specifications (Speculative)
328(1)
11.8 Operational Procedure
328(1)
11.9 System Performance (Speculative)
328(11)
11.9.1 Target Detection and Identification
328(1)
11.9.2 Flight Profile
328(2)
11.9.3 Radar Front End
330(1)
11.9.4 Antenna and Scanner
331(5)
11.9.5 Signal Processing
336(2)
11.9.6 Performance in Sea Clutter
338(1)
11.9.7 Target Identification
339(1)
11.10 Basic Principles of Homing Guidance
339(10)
11.10.1 Handover Analysis
340(2)
11.10.2 Engagement Kinematics
342(2)
11.10.3 Development of PN Guidance Law
344(1)
11.10.4 Simulations
345(1)
11.10.5 Extraction of LOS Rate
345(3)
11.10.6 Radome Design Requirements
348(1)
11.11 Further Studies
349(1)
11.12 The Results
349(1)
11.13 Altimeter
350(1)
11.14 FMICW Radar
350(1)
11.15 Design of the FMICW Altimeter
351(3)
11.16 Measurement Strategy
354(1)
11.17 Radar Controller
355(1)
11.18 Signal Processing
356(1)
11.19 Micro Radar Altimeter
356(2)
11.20 25 GHz Altimeter
358(1)
References
358(3)
Appendix A: FMCW Radar Designer GUI 361(4)
Appendix B: SNR Calculations in Radars 365(14)
B.1 Introduction
365(1)
B.2 Coherent Integration
365(1)
B.3 Noncoherent Integration
366(1)
B.4 MTI Radar
367(1)
B.5 Comparing to Chirp-Pulse Radars
368(1)
B.6 MTD Radar
369(2)
B.7 BFSR Analysis
371(1)
B.7.1 BFSR as MTI
371(1)
B.7.2 BFSR as MTD
372(1)
B.8 Dynamic Range Reexamined
372(5)
B.9 ADC 9255
377(4)
B.9.1 Measured noise floor at ADC input:-65 dBm
379(1)
References 379(2)
Appendix C: AAFs 381(6)
C.1 Introduction
381(1)
C.2 Bandwidth Issues
382(5)
About the Author 387(2)
Index 389
M. Jankiraman is a senior radar advisor to Larson and Toubro, Ltd. A holder of 4 patents in the field, he has decades of industry experience. Dr. Jankirman holds a Masters of Technology in radar design from The Deft University of Technology and a Ph.D. in wireless communications from Aalborg University.