Muutke küpsiste eelistusi

E-raamat: Food Biosensors

Edited by (Universiti Brunei Darussalam, Brunei Darussalam), Edited by (Osaka University, Japan), Edited by (Alfaisal University, Saudi Arabia)
  • Formaat - PDF+DRM
  • Hind: 961,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Biosensors are increasingly being used to replace traditional methods of analyte detection in the food industry. They offer a much quicker, more reliable and more versatile method for the detection of toxins, allergens, hormones, microorganisms, pesticides and other related compounds. This book, therefore, showcases the latest biosensor development in a single resource.Edited by Minhaz Uddin Ahmed, Mohammed Zourob and Eiichi Tamilya and with contributors from a list of world renowned scientists, this book covers the fabrication of biosensors, the development of miniatursied devices as well as the latest applications in the food industry. Several case studies of recent European food scandals emphasise the need for the development of reliable and affordable food monitoring devices.Up to date information on the current issues facing food biosensor development is presented in this key resource for food biotechnologists, food chemists and biosensor related students and researchers all over the world.

Covering all aspects of food biosensors, from how they function to the latest market applications, this book is essential reading for both new comers and experts in this field.
Chapter 1 Introduction to Food Biosensors
1(21)
Syazana Abdullah Lim
Minhaz Uddin Ahmed
1.1 Overview
1(4)
1.2 Receptors for Biosensing
5(6)
1.2.1 Natural Receptors
5(3)
1.2.2 Engineered Receptors
8(3)
1.3 Transducers
11(4)
1.3.1 Electrochemical Techniques
11(1)
1.3.2 Optical Techniques
12(2)
1.3.3 Mass-Sensitive Techniques
14(1)
1.3.4 Thermal Techniques
15(1)
1.4 Biosensors as Food Analytical Tool: An Emerging Trend
15(7)
Acknowledgements
17(1)
References
17(5)
Chapter 2 Innovative Tools with Miniaturized Devices for Food Biosensing
22(22)
Emilia K. Witkowska Nery
Everson T. S. G. Da Silva
Lauro T. Kubota
2.1 Introduction
22(1)
2.2 Innovative Tools for the Analysis of Foodstuffs
23(8)
2.2.1 Pesticides
24(2)
2.2.2 Heavy Metals
26(1)
2.2.3 Pathogens
27(1)
2.2.4 Toxins
28(1)
2.2.5 Adulteration and Freshness of Foodstuffs
29(2)
2.3 Miniaturization in Food Sensing
31(6)
2.3.1 Miniaturized Systems for Food Quality Control
32(3)
2.3.2 Food Biosensing in Developing Regions
35(2)
2.4 Perspectives
37(7)
References
38(6)
Chapter 3 Glucose, Glutamate, and Lactate Sensors for Measuring Food Components
44(27)
S. Koide
3.1 Introduction
44(1)
3.2 Production and Performance of Microplanar Biosensors
45(4)
3.2.1 Fabrication of Microplanar Electrodes
45(1)
3.2.2 Pretreatment of Electrode, and Preparation of Adhesive Layer and Selectively Permeable Layer
46(2)
3.2.3 Preparation of Enzyme Layer
48(1)
3.2.4 Preparation of Diffusion-Restricting Layer
48(1)
3.2.5 Sensor Structure
48(1)
3.3 Glucose Sensor for Brewing of Sake and Other Beverages
49(6)
3.3.1 Purpose
49(1)
3.3.2 Measurement Method
50(1)
3.3.3 Results and Discussion
50(3)
3.3.4 Summary
53(2)
3.4 Glutamate Sensor for Soup Stocks and Other Foods
55(4)
3.4.1 Purpose
55(1)
3.4.2 Measurement Method
55(1)
3.4.3 Results and Discussion
55(3)
3.4.4 Summary
58(1)
3.5 Lactate Sensor for Beverages and Foods
59(7)
3.5.1 Purpose
59(1)
3.5.2 Measurement Method
60(1)
3.5.3 Results and Discussion
60(4)
3.5.4 Summary
64(2)
3.6 Conclusion
66(5)
Acknowledgements
66(1)
References
66(5)
Chapter 4 Biosensor Platforms for Detecting Target Species in Milk Samples
71(33)
Marsilea A. Booth
Hande Karaosmanoglu
Yinqiu Wit
Ashton Partridge
4.1 Introduction
71(1)
4.2 Milk as a Sample
72(6)
4.2.1 Components of Milk
72(1)
4.2.2 Categories and Storage of Milk
73(1)
4.2.3 Common Analytes Targeted in Milk Samples
73(5)
4.3 Biosensor Platforms for Milk Analysis
78(15)
4.3.1 Optical Biosensors
79(9)
4.3.2 Electrochemical Biosensors
88(4)
4.3.3 Other Biosensor Platforms
92(1)
4.4 The Milk Matrix
93(5)
4.4.1 Common Sample Pretreatment Methods
93(3)
4.4.2 Differences in Observed Matrix Effects
96(1)
4.4.3 Comments About Milk Matrix Effects
97(1)
4.5 Discussion and Conclusions
98(6)
4.5.1 Discussion and Future Outlook
98(1)
4.5.2 Summary Points
99(1)
References
100(4)
Chapter 5 Bionanotechnology-Based Colorimetric Sensors for Food Analysis
104(27)
Jean Liew Zhi Ying
Lee Hoon Lim
Aminul Huq Mirza
Norhayati Ahmad
Ibrahim Abd Rahman
Minhaz Uddin Ahmed
5.1 Introduction and General Background
104(1)
5.1.1 Nanotechnology
104(1)
5.2 Working Principles Behind Colorimetric Biosensing
105(3)
5.2.1 Absorbance and the Beer-Lambert Law
106(1)
5.2.2 Color Changes and Pixel Data
107(1)
5.3 Nanomaterials in Colorimetric Biosensing
108(7)
5.3.1 Nanomaterials as Colorimetric Probes
108(4)
5.3.2 Nanomaterials as Carriers
112(1)
5.3.3 Nanomaterials as Enzyme Mimetics
112(3)
5.4 Applications in Food Safety
115(11)
5.4.1 Detection of Heavy Metals
115(7)
5.4.2 Detection of Antibiotics
122(1)
5.4.3 Detection of DNA
123(1)
5.4.4 Detection of Toxins and Toxicants
123(3)
5.5 Future Trends and Conclusions
126(5)
Acknowledgement
127(1)
References
127(4)
Chapter 6 An Evanescent Wave Fluorescent Immunosensor for Milk Quality Monitoring
131(30)
Xiaohong Zhou
Hanchang Shi
6.1 Introduction
131(5)
6.1.1 Potential Milk Contaminants
131(3)
6.1.2 Conventional Methods Used to Monitor Milk Contaminants
134(1)
6.1.3 Applications of Biosensors in Monitoring Milk Contaminants
135(1)
6.2 Evanescent Wave Fluorescent Immunosensor Technology
136(8)
6.2.1 Introduction
136(1)
6.2.2 Principle of Evanescent Waves
136(1)
6.2.3 Transducer Configuration
137(5)
6.2.4 Fluorescence-Based Immunoassay
142(2)
6.3 Instrumentation
144(6)
6.3.1 Planar Waveguide-Based Evanescent Wave Biosensor
145(2)
6.3.2 Fiber-Based Evanescent Wave Biosensor
147(3)
6.4 Chemical Modification and Regeneration of Transducer
150(1)
6.5 Applications of Evanescent Wave Fluorescent Immunosensor in Monitoring Milk Contaminants
151(4)
6.5.1 Optimization of Immunosensor Performance
151(1)
6.5.2 Applications
152(3)
6.6 Conclusions
155(1)
6.7 Future Perspectives
156(5)
Acknowledgments
156(1)
References
157(4)
Chapter 7 Chemiluminescence and Fluorescence Optical Biosensor for the Detection of Aflatoxins in Food
161(21)
Sunil Bhand
Lizy Kanungo
Souvik Pal
7.1 Introduction
161(1)
7.2 Optical Biosensors
162(4)
7.2.1 Principle of Chemiluminescence-Based Immunosensors
164(1)
7.2.2 Principle of Fluorescence-Based Immunosensors
165(1)
7.3 Application in Aflatoxin M1 Analysis
166(7)
7.3.1 Conventional Techniques for Aflatoxin Detection
167(1)
7.3.2 Current Developments in Aflatoxin Detection
167(6)
7.4 Integration of Nanoparticles in Aflatoxin Analysis
173(5)
7.4.1 Integrated Nanoparticle-Based Chemiluminescence and Fluorescence Biosensors
176(2)
7.5 Conclusion and Future Perspective
178(4)
Acknowledgments
178(1)
References
179(3)
Chapter 8 Colorimetric Biosensors for Bacterial Detection
182(21)
G. A. R. Y. Suaifan
8.1 Introduction
182(1)
8.2 Detection Methods
183(14)
8.2.1 Conventional Methods
183(1)
8.2.2 Rapid Methods
183(14)
8.3 Use of Colorimetric Biosensors in Other Fields
197(1)
8.4 Future Directions
198(5)
References
198(5)
Chapter 9 Nanomaterial-Based Electrochemical Sensors for Highly Sensitive Detection of Foodborne Pathogens
203(23)
Sukunya Oaew
Benchaporn Lertanantawong
Patsamon Rijiravanich
Mithran Somasundrum
Werasak Surareungchai
9.1 Common Foodborne Pathogens
203(3)
9.1.1 Salmonella spp.
204(1)
9.1.2 Campylobacter spp.
205(1)
9.1.3 Escherichia coli 0157:H7
205(1)
9.1.4 Vibrio choleras
205(1)
9.1.5 Listeria monocytogenes
206(1)
9.1.6 Shigella spp.
206(1)
9.2 Bacterial Detection Methods
206(1)
9.2.1 Conventional Methods
206(1)
9.2.2 Immunology-Based Methods
207(1)
9.2.3 Nucleic Acid-Based Methods
207(1)
9.3 Biosensors
207(2)
9.3.1 Electrochemical Detection Techniques
208(1)
9.3.2 Measurement Using a Fixed Potential
208(1)
9.3.3 Measurement Using a Ramped Potential
208(1)
9.3.4 Measurement Using a Pulsed Potential
209(1)
9.3.5 Anodic Stripping Voltammetry
209(1)
9.4 Electrochemical Biosensors for Food Pathogen Detection
209(2)
9.4.1 Electrochemical DNA Sensors for Food Pathogen Detection
209(1)
9.4.2 Electrochemical Immunosensors for Food Pathogen Detection
210(1)
9.5 Modification of Electrode by Nanoparticles
211(2)
9.5.1 Metal Nanoparticles
212(1)
9.5.2 Carbonaceous Nanomaterials
212(1)
9.6 Use of Nanomaterials as Electrochemical Labels
213(7)
9.6.1 Metallic Nanoparticles
214(2)
9.6.2 Nanocrystals
216(1)
9.6.3 Nanocarriers
217(3)
9.6.4 Other Nanomaterials
220(1)
9.7 Future Prospects
220(6)
Acknowledgments
221(1)
References
221(5)
Chapter 10 Development of Rapid Electrobiochemical Assays for Food Toxins
226(38)
A. I. Zia
S. C. Mukhopadhyay
10.1 Introduction
226(1)
10.2 Simulations and Optimization of Sensor Design
227(4)
10.3 Electrochemical Impedance Spectroscopy
231(1)
10.4 Real-Time Label-Free Electrochemical Assay for Chemotoxins in Food
232(8)
10.4.1 Materials
234(1)
10.4.2 Label-Free Analyte Selective Coating
234(1)
10.4.3 Results and Discussion
235(1)
10.4.4 Adsorption Studies of Phthalates to MIP
235(5)
10.5 Rapid Electrochemical Assay for Food Endotoxins
240(12)
10.5.1 Conventional Methods of Endotoxin Detection
241(1)
10.5.2 Materials and Methods
242(4)
10.5.3 Principal Component Analysis
246(2)
10.5.4 Validation of Sensor Measurement using Standard Chromogenic LAL Endotoxin Test Kit
248(4)
10.6 Rapid Electrochemical Assay for the Detection of Marine Biotoxins
252(3)
10.6.1 Existing Methods
252(1)
10.6.2 Materials and Methods
253(1)
10.6.3 Experiments with Seafood Products
253(2)
10.7 Conclusions
255(9)
References
257(7)
Chapter 11 Food Biosensors Based on Molecularly Imprinted Polymers
264(18)
Kisan Koirala
Jose H. Santos
Fortunato B. Sevilla
11.1 Introduction
264(3)
11.2 Preparation of Molecularly Imprinted Polymers
267(2)
11.2.1 Templates
267(1)
11.2.2 Functional Monomers
268(1)
11.2.3 Crosslinkers
268(1)
11.3 MIPs as Food Biosensors
269(8)
11.3.1 Optical-based Sensors
270(2)
11.3.2 Electrochemical Sensors
272(1)
11.3.3 Piezoelectric Sensors
273(4)
11.4 Challenges and Future Perspectives
277(1)
11.5 Conclusion
277(5)
References
278(4)
Chapter 12 Electrochemical Monitoring of Antioxidant Capacity in Food
282(17)
Naoki Nagatani
Hiromi Ushijima
12.1 Introduction
282(1)
12.2 Monitoring of Antioxidant Capacity
283(4)
12.2.1 Electron Transfer-Based Assay
284(1)
12.2.2 Hydrogen Atom Transfer Reaction-Based Assay
284(3)
12.3 Electrochemical Monitoring of Antioxidant Capacity
287(7)
12.3.1 Electrochemical Monitoring of Easily Oxidizable Food Constituents
287(4)
12.3.2 Electrochemical Monitoring of Radical Absorbance Capacity in Food
291(3)
12.4 Conclusion
294(5)
References
295(4)
Chapter 13 Nanostructure-Modified Electrodes for Food Sensors
299(28)
Mohammad A. Wahab
Farzana Darain
13.1 Introduction
299(1)
13.2 Nanomaterials and the Modification of Electrodes
300(22)
13.2.1 Pollutant Contaminants (Heavy Metal/Nitrite) in Foodstuffs
302(3)
13.2.2 Banned Sudan Dyes in Foodstuffs
305(3)
13.2.3 Formalin/Formaldehyde
308(1)
13.2.4 Trace Colorants and Azo Dyes
308(3)
13.2.5 Sensing of Carbendazim
311(4)
13.2.6 Ascorbic Acid Levels in Food Samples
315(1)
13.2.7 Food Toxins
316(3)
13.2.8 Catechol
319(3)
13.3 Conclusion and Future Perspectives
322(5)
References
323(4)
Chapter 14 Graphene-Based Biosensors for Food Analysis
327(27)
Shimaa Eissa
Mohamed Siaj
Mohammed Zourob
14.1 Introduction
327(2)
14.2 Graphene Materials: Preparation, Characterization, and Properties
329(5)
14.2.1 Preparation of Graphene
329(3)
14.2.2 Characterization of Graphene
332(1)
14.2.3 Properties of Graphene
332(2)
14.3 Functionalization of Graphene for Biosensing Applications
334(1)
14.4 Graphene in Biosensors for Food Safety
335(12)
14.4.1 Detection of Allergens
335(6)
14.4.2 Detection of Small Molecules
341(5)
14.4.3 Detection of Pathogens
346(1)
14.5 Conclusion and Future Perspectives
347(7)
References
348(6)
Chapter 15 Rapid Detection of Food Pathogens by Portable and On-Site Electrochemical DNA Sensors
354(13)
Keiichiro Yamanaka
Masato Saito
15.1 Introduction
354(3)
15.2 Electrochemical DNA Sensors
357(1)
15.3 Detection of DNA Amplification by Portable Electrochemical DNA Sensor
358(7)
15.3.1 E. coli Detection Using a Portable Electrochemical Sensor
359(2)
15.3.2 Semi-Real-Time Electrochemical LAMP Measurement for Salmonella Detection
361(4)
15.4 Conclusion
365(2)
References
365(2)
Chapter 16 Isothermal DNA Amplification Strategies for Food Biosensors
367(26)
Sharmili Roy
Mohammad Mosharraf Hossain
Mohammadali Safavieh
Hamadah Nur Nubis
Mohammad Zourob
Minhaz Uddin Ahmed
16.1 Introduction
367(1)
16.2 General Aspects of Foodborne Pathogens
368(4)
16.3 Unconventional Techniques for Pathogen Detection in Food
372(6)
16.3.1 Isothermal Amplification
372(1)
16.3.2 Loop-Mediated Isothermal Amplification (LAMP)
372(2)
16.3.3 Rolling Circle Amplification (RCA)
374(1)
16.3.4 Strand Displacement Amplification (SDA)
374(1)
16.3.5 Signal-Mediated Amplification of RNA Technology (SMART)
375(2)
16.3.6 Cross-Priming Isothermal Amplification (CPA)
377(1)
16.3.7 Nucleic Acid Sequence-Based Amplification (NASBA)
377(1)
16.4 Electrochemical Nucleic Acid-Based Biosensor Through Isothermal Amplifications
378(4)
16.4.1 Graphene-Based Detection Through Isothermal Amplification
380(1)
16.4.2 Electrochemiluminescence-Based Detection
380(2)
16.5 Nanoparticle-Based DNA Biosensors
382(1)
16.5.1 Magnetic Beads
382(1)
16.5.2 Colorimetric Detection for DNA Sensors
382(1)
16.6 Lab-on-a-Chip Devices in Food Applications Based on Isothermal Amplification
383(1)
16.7 Comparison Between Conventional and Isothermal Techniques for Pathogen Detection
384(1)
16.7.1 Immunology-Based Detection
385(1)
16.7.2 Culture and Colony Method
385(1)
16.7.3 Polymerase Chain Reaction (PCR)
385(1)
16.8 Conclusions
385(8)
Acknowledgment
387(1)
References
387(6)
Chapter 17 Capillary Array-Based Microanalytical Devices for Simple and Multiplexed Detection in Bioanalysis
393(21)
Hideaki Hisamoto
17.1 Introduction
393(2)
17.2 Capillary-Assembled Microchip
395(10)
17.2.1 General Concept
395(1)
17.2.2 Preparation and Application of Various Capillary Sensors
395(6)
17.2.3 Device Fabrication and Sample Introduction
401(4)
17.3 Combinable PDMS Capillary Sensor Array
405(7)
17.3.1 General Concept
405(2)
17.3.2 Preparation of CPC Sensor Array
407(1)
17.3.3 Application of CPC Sensor Array for Single-Step Bioassays
408(4)
17.4 Conclusions
412(2)
Acknowledgments
412(1)
References
412(2)
Chapter 18 Biosensor Systems for the Monitoring of Fish Health and Freshness in Aquaculture
414(18)
Haiyun Wu
Hideaki Endo
18.1 Introduction
414(1)
18.2 Biosensor Systems for Fish Cultivation
415(7)
18.2.1 Real-Time Monitoring of Fish Health
415(4)
18.2.2 Detection of Fish Pathogenic Bacteria
419(1)
18.2.3 Prediction of Fish Spawning
420(2)
18.3 Biosensor System for Evaluating Fish Freshness
422(7)
18.3.1 Measurement of K-value
424(2)
18.3.2 Measurement of Trimethylamine
426(3)
18.4 Other Measurement Systems
429(1)
18.5 Conclusion
429(3)
References
429(3)
Chapter 19 Phage-Based Biosensors for Food Analysis
432(31)
Esen Sokullu
Andy Ng
19.1 Introduction
432(1)
19.2 Bacteriophages
433(1)
19.3 Engineering of Phage Materials
434(2)
19.3.1 Phage Display
434(2)
19.3.2 Decoration of Phage Surface with Inorganic Materials
436(1)
19.4 Phage-Based Biosensors
436(19)
19.4.1 Techniques for Immobilization of Phage
436(2)
19.4.2 Regeneration of Phage-Modified Sensor Surfaces
438(1)
19.4.3 Electrochemical Biosensors
438(5)
19.4.4 Optical Biosensors
443(7)
19.4.5 Acoustic Wave Biosensors
450(2)
19.4.6 Phage-Based Immunoassays
452(3)
19.5 Concluding Remarks and Outlook
455(8)
References
456(7)
Chapter 20 Food Biosensors: Perspective, Reliability, Selectivity, Response Time, Quality Control, and Cost-Effectiveness
463(51)
Elif Burcu Bahadir
Mustafa Kemal Sezginturk
20.1 Biosensors
463(3)
20.2 Application of Biosensors in Food Analysis
466(35)
20.2.1 Biosensors for Xenobiotic Compounds in Food
466(28)
20.2.2 Biosensors for Toxins in Food
494(7)
20.2.3 Biosensors for Pathogens in Food
501(1)
20.3 Conclusion and Future Outlook
501(13)
References
505(9)
Subject Index 514