Muutke küpsiste eelistusi

E-raamat: Forcing Method in Set Theory: An Introduction via Boolean Valued Logic

  • Formaat: EPUB+DRM
  • Sari: UNITEXT 168
  • Ilmumisaeg: 11-Nov-2024
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031716607
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: UNITEXT 168
  • Ilmumisaeg: 11-Nov-2024
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031716607
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The main aim of this book is to provide a compact self-contained presentation of the forcing technique devised by Cohen to establish the independence of the continuum hypothesis from the axioms of set theory. The book follows the approach to the forcing technique via Boolean valued semantics independently introduced by Vopenka and Scott/Solovay; it develops out of notes I prepared for several master courses on this and related topics and aims to provide an alternative (and more compact) account of this topic with respect to the available classical textbooks. The aim of the book is to take up a reader with familiarity with logic and set theory at the level of an undergraduate course on both topics (e.g., familiar with most of the content of introductory books on first-order logic and set theory) and bring her/him to page with the use of the forcing method to produce independence (or undecidability results) in mathematics. Familiarity of the reader with general topology would also be quite helpful; however, the book provides a compact account of all the needed results on this matter. Furthermore, the book is organized in such a way that many of its parts can also be read by scholars with almost no familiarity with first-order logic and/or set theory. The book presents the forcing method outlining, in many situations, the intersections of set theory and logic with other mathematical domains. My hope is that this book can be appreciated by scholars in set theory and by readers with a mindset oriented towards areas of mathematics other than logic and a keen interest in the foundations of mathematics.

- 1. Introduction.- 2. Preliminaries: Preorders, Topologies,
Axiomatizations of Set Theory.- 3. Boolean Algebras.- 4. Complete Boolean
Algebras.- 5. More on Preorders.- 6. Boolean Valued Models.- 7. Forcing.
Matteo Viale is a full professor in mathematical logic in the Mathematics Department of the University of Torino. In 2006, he won the Sacks prize in mathematical logic awarded by the Association of Symbolic Logic for the best PhD thesis in logic for that year. He has also won the 2010 Kurt Goedel Research fellowship (awarded by the Kurt Goedel Society) and the Fubini prize in 2011 (awarded by the Istituto Guido Boella). He has published over 20 papers in refereed journals, including top ones such as JAMS, TAMS, and Advances in Mathematics. He has taught master-level courses in set theory since 2012. He has supervised over 20 masters theses in mathematical logic and three PhD students.