Muutke küpsiste eelistusi

E-raamat: Forest Monitoring: Methods for terrestrial investigations in Europe with an overview of North America and Asia

Volume editor (Johann Heinrich von Thünen Institute for World Forestry, Hamburg, Germany), Volume editor (TerraData Environmetrics, Monterotondo Marittimo (Gr), Italy)
  • Formaat - EPUB+DRM
  • Hind: 164,25 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The demand for comparable, long-term, high quality data on forest ecosystems' status and changes is increasing at the international and global level. Yet, sources for such data are limited and in many case it is not possible to compare data from different monitoring initiatives across space and time because of methodological differences. Apart from technical manuals, there is no comprehensive multidisciplinary, scientific, peer-reviewed reference for forest monitoring methods that can serve and support the user community. This book provides in a single reference the state-of-the-art of monitoring methods as applied at the international level.

The book present scientific concepts and methods that form the basis of the transnational, long-term forest monitoring in Europe and looks at other initiatives at the global level. Standardized methods that have been developed over two decades in international forest monitoring projects are presented. Emphasis is put on trans-nationally harmonized methods, related data quality issues, current achievements and on remaining open questions.

  • A comprehensive overview of needs, requirements, organization and possible outcomes of an integrated monitoring program
  • Tested and quality assured, internationally harmonized methodologies based on a complete revision of existing methods carried out in 2009-2011
  • Connection with monitoring results allows assessment of the potential of the monitoring method

Muu info

This book provides a compilation of state-of-the-art forest monitoring methods applied at international level.
Contributors xxi
Preface xxv
Section I Introduction to Forest Monitoring
1 Forest Monitoring: An Introduction
3(16)
Marco Ferretti
1.1 Setting the Scene
3(2)
1.2 What is Forest Monitoring?
5(2)
1.2.1 Definitions
5(1)
1.2.2 Monitoring Methods
6(1)
1.3 Monitoring and Science
7(4)
1.3.1 Relevance
7(1)
1.3.2 Relationship with Other Scientific Investigation Approaches
8(3)
1.4 Forest Monitoring by Terrestrial Methods: What Has Been Done?
11(2)
1.5 This Book
13(2)
1.5.1 Aims
13(1)
1.5.2 Structure and Contents
14(1)
Acknowledgments
15(1)
References
15(4)
2 Pan-European Forest Monitoring: An Overview
19(14)
Martin Lorenz
Richard Fischer
2.1 Introduction
19(1)
2.2 Forest Information Needs
20(1)
2.3 Approaches of Assessing Forest Information
21(1)
2.4 ICP Forests
22(3)
2.5 Cooperations in Monitoring and Data Analyses
25(3)
2.6 Results
28(1)
2.7 Conclusions
29(1)
References
30(3)
3 Forest and Related-Ecosystem Monitoring in Acid Deposition Monitoring Network in East Asia
33(16)
Hiroyuki Sase
Wilfredo M. Carandang
Elizabeth Philip
Masamichi Takahashi
Naoyuki Yamashita
3.1 Introduction
33(1)
3.2 Possible Effects of Air Pollution/Acid Deposition in East Asian Forests
34(1)
3.2.1 Decline of Forests
34(1)
3.2.2 Nitrogen Saturation
35(1)
3.3 Monitoring Methods in Forest and Related Ecosystems
35(7)
3.3.1 EANET Monitoring
35(1)
3.3.2 Monitoring of Forest and Related Ecosystems
36(2)
3.3.3 Monitoring Plots
38(1)
3.3.4 Methods
39(3)
3.4 Achievements of the Monitoring Program
42(4)
3.4.1 Forest Vegetation
42(1)
3.4.2 Forest Soil
43(1)
3.4.3 Biogeochemical Analysis in Forest Catchments
44(2)
3.5 Conclusions
46(1)
Acknowledgments
46(1)
References
46(3)
4 Forest Monitoring Methods in the United States and Canada: An Overview
49(28)
Borys Tkacz
Kurt Riitters
Kevin E. Percy
4.1 Introduction
49(1)
4.2 FHM in the United States
50(10)
4.2.1 History and Implementation of FHM Program
50(7)
4.2.2 Research on Monitoring Techniques
57(1)
4.2.3 Reporting on Forest Health Conditions in the United States
58(1)
4.2.4 Assessing Future Risks to Forests of the United States
59(1)
4.3 Forest Monitoring in Canada: National Early Warning System and the AOSR Case Study
60(8)
4.3.1 Early Attempts and Recent Systems
60(1)
4.3.2 FHM in the AOSR of Alberta, Canada
61(7)
4.4 Conclusion
68(1)
References
69(8)
Section II Designing Forest Monitoring
5 A Quality Assurance Framework for Designing Forest Monitoring Programs
77(14)
Marco Ferretti
5.1 Introduction
77(2)
5.2 Data Requirements and Sources of Error
79(3)
5.3 Promoting a QA Framework
82(6)
5.4 Conclusion: A QA Perspective to Drive the Monitoring Design
88(1)
References
88(3)
6 Concepts and Design Principles Adopted in the International Cooperative Program on the Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests)
91(14)
Marco Ferretti
6.1 Introduction
91(1)
6.2 Defining Program Objectives and Implications
92(1)
6.3 Nature of Monitoring Networks
93(3)
6.4 Type, Number, and Characteristics of the Monitoring Plots and Sites
96(5)
6.4.1 Level I Plots
96(2)
6.4.2 Level II Sites
98(3)
6.4.3 Connection and Integration with Other Monitoring Networks
101(1)
6.5 Measurements
101(1)
6.6 Quality Assurance and Data Management
102(1)
6.7 Conclusions
102(1)
Acknowledgments
102(1)
References
103(2)
7 Large-Scale Pan-European Forest Monitoring Network: A Statistical Perspective for Designing and Combining Country Estimates. Example for Defoliation
105(34)
Davide Travaglini
Cherardo Chirici
Francesca Bottalico
Marco Ferretti
Piermaria Corona
Anna Barbati
Lorenzo Fattorini
7.1 Introduction
106(1)
7.2 Sampling Designs in Large-Scale Forest Monitoring in Europe
107(3)
7.3 Relationship Between FCM and NFI Networks
110(3)
7.4 Design-Based European Monitoring System of Forest Condition
113(6)
7.4.1 The Importance of Clear Objectives
113(2)
7.4.2 Defining Parameters of Concern
115(2)
7.4.3 Defining Accuracy Measures for Status Assessment
117(1)
7.4.4 Defining Accuracy Measures for Change Assessment
118(1)
7.5 Sampling Strategies at the Country Level
119(6)
7.5.1 Uniform Random Sampling
119(3)
7.5.2 URS Versus Systematic and Stratified Sampling
122(3)
7.5.3 Sampling Effort: A Preliminary Test
125(1)
7.6 Aggregating Country Estimates at the European Level
125(6)
7.6.1 Combining FCM Estimates
127(1)
7.6.2 Coupling FCM and NFI Estimates Across Europe
128(3)
7.7 Conclusions
131(2)
References
133(6)
Section III Monitoring Methods for Above-Ground Vegetation
8 Assessment of Tree Condition
139(30)
Johannes Eichhorn
Peter Roskams
8.1 Introduction
140(1)
8.2 Forest Health Indicators in Relation to Ecosystem Dynamics and Processes
141(3)
8.2.1 Indicators Related to Ecosystem Processes
142(1)
8.2.2 Indicators Related to Ecosystem Disturbances
143(1)
8.2.3 Indicators Related to Ecosystem Internal Regulation of Tree Condition
144(1)
8.3 Procedures for Visual Assessment of Tree Condition
144(3)
8.3.1 Expertise, Training, and Intercalibration
144(1)
8.3.2 Frequency of Crown Condition Assessment
144(1)
8.3.3 Sample Trees
145(1)
8.3.4 Position of Crown Condition Assessment
145(1)
8.3.5 Assessable Crown
145(2)
8.4 Assessment of Defoliation, Apical Shoot Architecture, and Fructification
147(3)
8.4.1 Defoliation
147(1)
8.4.2 Apical Shoot Architecture
148(1)
8.4.3 Fructification
148(2)
8.5 Biotic and Abiotic Damages
150(8)
8.5.1 Symptom Description
151(6)
8.5.2 Age of the Damage
157(1)
8.5.3 Causal Agents/Factors
157(1)
8.5.4 Quantification of Symptoms and Signs
158(1)
8.6 Assessment of Removals and Mortality
158(1)
8.7 Assessment of Age
159(1)
8.8 Relative Crown Distance
159(1)
8.9 Examples of Results: European Survey and Specific Studies
160(5)
8.9.1 Defoliation Pattern and Trend at European Level and Insect Damage
160(3)
8.9.2 Examples of Specific Results
163(2)
References
165(4)
9 Tree Phenology
169(14)
Ursa Vilhar
Egbert Beuker
Toshie Mizunuma
Mitja Skudnik
Francois Lebourgeois
Kamel Soudani
Matthew Wilkinson
9.1 Introduction
169(1)
9.2 Objectives
170(1)
9.3 Location of Measurements and Observations
170(1)
9.4 Variables to be Assessed
171(1)
9.5 Measurements
171(6)
9.5.1 Manual Phenological Observations
171(3)
9.5.2 Observations Using Indirect Techniques
174(3)
9.6 Quality Assurance
177(1)
9.7 Examples of National Applications
177(2)
9.7.1 Trends in the Growing Season Length in Slovenia
177(1)
9.7.2 Needle Appearance in Finland
177(1)
9.7.3 Modeling Climate Change Effects on French Plots
178(1)
9.8 Conclusions
179(2)
Acknowledgments
181(1)
References
181(2)
10 Tree Growth Measurements in Long-Term Forest Monitoring in Europe
183(22)
Matthias Dobbertin
Markus Neumann
Hans-Werner Schroeck
10.1 Introduction
184(1)
10.2 Objectives
185(1)
10.3 Field Measurements
185(12)
10.3.1 Sampling Design
188(4)
10.3.2 Measurement Methods and Equipment
192(5)
10.4 QA and Quality Control
197(1)
10.4.1 Error Types
197(1)
10.4.2 Plausibility Limits Data Quality Requirements
197(1)
10.4.3 Data Completeness
197(1)
10.5 Calculation of Forest Growth
198(1)
10.5.1 Estimation of Tree Volume
198(1)
10.5.2 Computation of Stand-Level Variables
198(1)
10.6 Results of Forest Growth Evaluations
199(4)
10.6.1 Tree Volume and Increment
199(1)
10.6.2 Effect of Atmospheric Deposition and Temperature on Tree Growth
200(2)
10.6.3 Effect of Drought on Annual Growth
202(1)
10.7 Conclusions
203(1)
References
203(2)
11 Assessment of Visible Foliar Injury Induced by Ozone
205(18)
Marcus Schaub
Vicent Calatayud
11.1 Introduction
205(2)
11.2 Objectives
207(1)
11.3 Methods
207(8)
11.3.1 Location of Measurements and Sampling
207(2)
11.3.2 Equipment
209(1)
11.3.3 Time of Observations and Sampling
209(1)
11.3.4 Variables and Symptom Identification
209(5)
11.3.5 Evaluation and Scoring
214(1)
11.3.6 Symptom Documentation
215(1)
11.4 Quality Assurance and Quality Control
215(1)
11.5 Data Processing
216(1)
11.6 Results
216(4)
Acknowledgments
220(1)
References
220(3)
12 Tree Foliage: Sampling and Chemical Analyses
223(14)
Pasi Rautio
Alfred Furst
12.1 Introduction
223(1)
12.2 Sampling
224(4)
12.2.1 How to Select Sample Plots
224(1)
12.2.2 What Kind of Trees to Select
224(1)
12.2.3 What Kind of Foliage to Sample
225(2)
12.2.4 How to Collect and Store Samples
227(1)
12.2.5 Frequency of Sampling
227(1)
12.2.6 Timing
227(1)
12.2.7 How to Transport and Store Samples
228(1)
12.3 Chemical Analyses
228(2)
12.3.1 Pretreatment of the Samples
228(1)
12.3.2 Digestion (or Ashing) and Analytical Method
229(1)
12.3.3 Quality Measures in the Lab
230(1)
12.4 Evaluation and Results
230(5)
12.4.1 Threshold Values
230(1)
12.4.2 Results of Pan-European Tree Foliar Analyses
231(4)
References
235(2)
13 Diversity and Composition of Plant and Lichen Species
237(14)
Roberto Canullo
Franz Starlinger
Paolo Giordani
13.1 Introduction
238(1)
13.1.1 Assessment of Vegetation Diversity
238(1)
13.1.2 Objectives
239(1)
13.2 Methods and Techniques
239(2)
13.2.1 Sampling Design
239(2)
13.3 Measurement Methods
241(3)
13.3.1 Variables to be Measured
241(1)
13.3.2 Timing of Survey and Repetition
242(1)
13.3.3 Species Lists, Nomenclature, and Taxonomic References
243(1)
13.3.4 Vegetation Structure
243(1)
13.3.5 Abundance Scoring Systems
244(1)
13.4 Quality Assurance
244(1)
13.5 Data Handling, Analysis, and Interpretation
244(3)
13.5.1 Transformation of Abundance Scales
244(1)
13.5.2 Data Aggregation and Bioindication
245(2)
13.5.3 Species Composition and Cover
247(1)
13.6 Conclusions
247(2)
Acknowledgments
249(1)
References
249(2)
14 Litterfall --- Biomass, Chemistry, Leaf Area, and Links with Wider Ecosystem Functioning
251(16)
Rona M. Pitman
14.1 Introduction
251(1)
14.2 Objectives
252(1)
14.3 Field Procedures
253(2)
14.3.1 Number of Replicates
253(1)
14.3.2 Sampling Scheme
253(1)
14.3.3 Sampling Equipment
253(1)
14.3.4 Frequency of Sampling
254(1)
14.3.5 Sample Collection, Transport, and Storage---Quality Control in the Field
255(1)
14.4 Laboratory Procedures
255(4)
14.4.1 Reception
255(1)
14.4.2 Litter Sorting and Quantity Measurement
255(3)
14.4.3 Quality of Litterfall---Chemical Analysis
258(1)
14.4.4 SLA Measurements for LAI Estimation
258(1)
14.5 An Evaluation of Litterfall Links with Wider Ecosystem Functioning
259(4)
Acknowledgments
263(1)
References
263(4)
Section IV Monitoring Methods for Soil
15 Forest Soil: Characterization, Sampling, Physical, and Chemical Analyses
267(34)
Nathalie Cools
Bruno De Vos
15.1 Introduction
268(3)
15.2 Field Sampling and Field Measurements
271(16)
15.2.1 Sampling Design
271(2)
15.2.2 Pedological Characterization
273(4)
15.2.3 Composite Sampling at Fixed Depths
277(5)
15.2.4 Soil Bulk Density and Coarse Fragments
282(3)
15.2.5 Sampling for Soil Water Retention Characteristic Measurements
285(1)
15.2.6 Sampling Equipment
286(1)
15.2.7 Sample Packing and Transport
286(1)
15.3 Laboratory Measurements
287(6)
15.3.1 Sample Preparation
287(1)
15.3.2 Selection of Key Soil Analytical Variables
287(1)
15.3.3 Physical Soil Variables
288(1)
15.3.4 Chemical Soil Variables
289(4)
15.3.5 Quality Control
293(1)
15.3.6 Long-Term Storage of Soil Samples
293(1)
15.4 Data Compilation and Validation
293(1)
15.5 Submission of the Data to and Storage in the Central Database
294(1)
15.6 Data Evaluation
295(2)
Acknowledgments
297(1)
References
297(4)
16 Soil Solution: Sampling and Chemical Analyses
301(18)
Tiina Maileena Nieminen
Kirsti Derome
Henning Meesenburg
Bruno De Vos
16.1 Introduction
301(2)
16.2 Objectives
303(1)
16.3 Soil Solution Sampling Techniques
304(5)
16.3.1 Installation of the Soil Solution Samplers
305(1)
16.3.2 Location of the Samplers
306(1)
16.3.3 Number of Replicate Samples
307(1)
16.3.4 Sampling Frequency
308(1)
16.4 Storage, Preparation, and Chemical Analyses
309(1)
16.5 Examples of Published Leaching Fluxes and Critical Limit Exceedances
310(1)
16.6 Conclusions
311(2)
Acknowledgments
313(1)
References
313(6)
Section V Monitoring Methods for Atmosphere-Related Variables in Forests
17 Meteorology
319(18)
Stephan Raspe
Annemarie Bastrup-Birk
Stefan Fleck
Wendelin Weis
Helmut Mayer
Henning Meesenburg
Markus Wagner
Dirk Schindler
Karl Gartner
17.1 Importance of Meteorological Variables on Vitality and Development of Forests
320(1)
17.2 Components of Meteorological Monitoring
321(2)
17.3 Measurement Design and Techniques
323(5)
17.3.1 Location of the Meteorological and Hydrological Measurements
323(1)
17.3.2 Measurement Equipment
324(4)
17.4 Data Collection, Transmission, and Storage
328(1)
17.5 Quality Assurance and Quality Control
328(2)
17.5.1 QA in the Field
328(1)
17.5.2 QC of the Database
329(1)
17.6 Application of Meteorological Monitoring in Water Budget Modeling
330(5)
17.6.1 A Long-Term Study for Two ICP Forests Plots in the Solling Mountain Range
333(2)
References
335(2)
18 Atmospheric Deposition to Forest Ecosystems
337(38)
Karin Hansen
Anne Thimonier
Nicholas Clarke
Jeroen Staelens
Daniel Zlindra
Peter Waldner
Aldo Marchetto
18.1 Introduction
338(1)
18.2 Objectives
338(1)
18.3 The Deposition Process: Terms and Definitions
339(2)
18.4 Precipitation and Throughfall Sampling
341(17)
18.4.1 Collector Type
341(1)
18.4.2 Collector Design
342(4)
18.4.3 Contamination and Biochemical Transformation
346(3)
18.4.4 Siting Criteria, Spatial and Temporal Variabilities: Implications for Sample Size
349(6)
18.4.5 Cleaning and Sampling
355(2)
18.4.6 Sample Transport, Storage, and Analysis
357(1)
18.5 Interpretation of Atmospheric Deposition
358(6)
18.5.1 Data Validation Procedures
358(1)
18.5.2 Missing Values, Reporting Units, and Calculations
359(1)
18.5.3 Estimation of Total Deposition, DD, and CE
360(3)
18.5.4 Examples of Atmospheric Deposition to Forest Ecosystems
363(1)
18.6 Gaps in Knowledge and Future Work
364(3)
18.6.1 Future Evaluations of Deposition Measurement Methods
364(3)
18.6.2 Uncertainties of Methods for Estimating Atmospheric Deposition to Forests
367(1)
18.7 Conclusions
367(1)
Acknowledgments
368(1)
References
369(6)
19 Methods for Measuring Gaseous air Pollutants in Forests
375(12)
Vicent Calatayud
Marcus Schaub
19.1 Introduction
376(1)
19.2 Measuring Air Pollutants in Forests
376(4)
19.2.1 Types of Passive Samplers
376(1)
19.2.2 Location of the Sampling Site
377(1)
19.2.3 Use of Shelter and Number of Replicates
378(1)
19.2.4 Sampling Height
379(1)
19.2.5 Frequency of Sampling
379(1)
19.2.6 Sample Collection, Transport, and Storage
379(1)
19.2.7 Analysis
379(1)
19.2.8 Data Plausibility and Data Completeness
379(1)
19.2.9 Quality Assurance and Quality Control
380(1)
19.3 Results
380(3)
19.3.1 Annual Variation and Trends of O3 Concentrations
380(1)
19.3.2 Spatial Patterns of O3 Concentrations, Hot Spots, Latitudinal and Altitudinal Gradients
380(2)
19.3.3 Estimating AOT40 and O3 Fluxes from Passive Samplers
382(1)
19.3.4 Concentrations of NO2, SO2, and NH3 in Spanish Plots and CLes
382(1)
Acknowledgments
383(1)
References
383(4)
Section VI Methods to Ensure Monitoring Quality
20 Quality Assurance in International Forest Monitoring in Europe
387(10)
Marco Ferretti
Nils Konig
20.1 Introduction
387(1)
20.2 Components of the QA Program
388(5)
20.2.1 Standard Operating Procedures
389(2)
20.2.2 DQ Indicators
391(1)
20.2.3 Training and Intercomparison Activity
391(1)
20.2.4 Counter-Actions
392(1)
20.2.5 Data Validation Procedures
393(1)
20.3 Conclusion and Perspectives
393(2)
References
395(2)
21 Data Quality in Field Surveys: Methods and Results for Tree Condition, Phenology, Growth, Plant Diversity and Foliar Injury due to Ozone
397(18)
Marco Ferretti
Egbert Beuker
Vicent Calatayud
Roberto Canullo
Matthias Dobbertin
Johannes Eichhorn
Markus Neumann
Peter Roskams
Marcus Schaub
21.1 Introduction
398(1)
21.2 Methods to Evaluate Data Quality in Field Surveys
398(5)
21.2.1 SOPs and DQRs
399(1)
21.2.2 Assessment of Data Quality
399(4)
21.3 Design and Organization of Comparison Exercises
403(5)
21.3.1 Field Exercises
403(3)
21.3.2 Photo Exercises
406(2)
21.4 Results
408(1)
21.5 Conclusion
408(4)
Acknowledgments
412(1)
References
412(3)
22 Data Quality in Laboratories: Methods and Results for Soil, Foliar, and Water Chemical Analyses
415(40)
Nils Konig
Nathalie Cools
Kirsti Derome
Anna Kowalska
Bruno De Vos
Alfred Furst
Aldo Marchetto
Philip O'Dea
Gabriele A. Tartari
22.1 Introduction
416(1)
22.2 Components of a Laboratory QA Program
416(1)
22.3 Reference Methods
417(1)
22.4 Control Charts
418(1)
22.5 Reference Materials
418(6)
22.5.1 RM for Water (Deposition and Soil Solution) Analysis
419(1)
22.5.2 RM for Foliar Analysis
420(1)
22.5.3 RM for Soil Analysis
420(4)
22.6 Validation of Analytical Data
424(17)
22.6.1 Validation Procedures for Water Analysis
424(6)
22.6.2 Validation Procedures for Soil
430(6)
22.6.3 Validation Procedure for Foliar and Litterfall Samples
436(5)
22.7 Interlaboratory QA
441(5)
22.7.1 Ring Tests
441(1)
22.7.2 Tolerable Limits
442(1)
22.7.3 Qualification Reports
442(4)
22.8 Quality Indicators
446(3)
22.8.1 Percentage Ring Test Results Within Tolerable Limits
447(1)
22.8.2 Percentage Ring Test Results Within 10% Precision Level
448(1)
22.8.3 Mean Percentage of Variables with Control Charts
449(1)
22.9 Quality Reports
449(1)
Acknowledgments
450(1)
References
450(5)
23 Methods for Database Quality Assessment
455(14)
Oliver Granke
23.1 Introduction
455(1)
23.2 Data Providers, Database Managers, and Data Users
456(3)
23.2.1 Implementation of Standardized Methods for Field Data Provision
456(1)
23.2.2 Technical Specifications
457(1)
23.2.3 Components of a Web-Based DBMS
457(2)
23.3 Quality Control in Databases
459(4)
23.3.1 Compliance Checks
461(1)
23.3.2 Conformity Checks
461(1)
23.3.3 Uniformity Checks
462(1)
23.4 Documentation of Data Quality
463(1)
23.5 The Pan-European Forest Monitoring Database: A Prominent Example
463(3)
23.5.1 Upload and Validation
464(1)
23.5.2 WebGIS
465(1)
23.5.3 Data Download
465(1)
23.5.4 Administrator and Reporting Module
466(1)
23.6 Conclusions and Outlook
466(1)
Acknowledgments
466(1)
References
466(3)
24 Reporting Forest Monitoring
469(14)
Andy J. Moffat
Richard Fischer
24.1 Introduction
469(1)
24.2 A Communications Strategy for Monitoring Programs
470(3)
24.3 Ways of Reporting
473(4)
24.3.1 Provision of Data and Metadata
473(1)
24.3.2 Provision of Information: Use of Standards and Indicators
474(1)
24.3.3 Provision of Knowledge: Scientific Interpretation and Publication
475(1)
24.3.4 Reporting Under Different Umbrellas
476(1)
24.4 Use of the Internet
477(1)
24.4.1 Real-time Reporting from Earth Observation Monitoring Platforms
477(1)
24.4.2 Interactive Communication
478(1)
24.5 Data Access
478(1)
24.6 Conclusions
478(1)
References
479(4)
Section VII Forest Monitoring: Synthesis and Outlook
25 Terrestrial Methods in Forest Monitoring: Toward the Next Generation?
483(14)
Marco Ferretti
Richard Fischer
Andy J. Moffat
25.1 Introduction
483(1)
25.2 Achievements
484(4)
25.2.1 Infrastructures
484(1)
25.2.2 Long-term, Large-scale Cooperation
485(1)
25.2.3 Progress and Harmonization of Methodology
485(1)
25.2.4 Documented Data Quality
486(1)
25.2.5 Products
487(1)
25.3 Questions to be Solved
488(1)
25.3.1 Technical Issues
488(1)
25.3.2 Political Issues
489(1)
25.4 Future Perspectives
489(4)
25.4.1 Policy, Science, and Societal Relevance
489(2)
25.4.2 Technical Issues
491(2)
25.5 Conclusions: Toward a New Generation of Forest Monitoring Programs
493(1)
References
494(3)
Index 497