Muutke küpsiste eelistusi

E-raamat: Foundation Engineering for Expansive Soils

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 10-Feb-2015
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118415290
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 146,90 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 10-Feb-2015
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118415290
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Only modern guide to the design and construction of foundations on expansive soils, Foundation Engineering for Expansive Soils provides a succinct introduction to the basics of expansive soils and their threats from a design perspective rather than theoretic.

Your guide to the design and construction of foundations on expansive soils

Foundation Engineering for Expansive Soils fills a significant gap in the current literature by presenting coverage of the design and construction of foundations for expansive soils. Written by an expert author team with nearly 70 years of combined industry experience, this important new work is the only modern guide to the subject, describing proven methods for identifying and analyzing expansive soils and developing foundation designs appropriate for specific locations.

Expansive soils are found worldwide and are the leading cause of damage to structural roads. The primary problem that arises with regard to expansive soils is that deformations are significantly greater than in non-expansive soils and the size and direction of the deformations are difficult to predict. Now, Foundation Engineering for Expansive Soils gives engineers and contractors coverage of this subject from a design perspective, rather than a theoretical one. Plus, they'll have access to case studies covering the design and construction of foundations on expansive salts from both commercial and residential projects.

  • Provides a succinct introduction to the basics of expansive soils and their threats
  • Includes information on both shallow and deep foundation design
  • Profiles soil remediation techniques, backed-up with numerous case studies
  • Covers the most commonly used laboratory tests and site investigation techniques used for establishing the physical properties of expansive soils

If you're a practicing civil engineer, geotechnical engineer or contractor, geologist, structural engineer, or an upper-level undergraduate or graduate student of one of these disciplines, Foundation Engineering for Expansive Soils is a must-have addition to your library of resources.

Preface xv
List of Symbols xix
List of Abbreviations xxv
1 Introduction 1(8)
1.1 Purpose
2(1)
1.2 Organization
2(2)
1.3 Terminology
4(3)
References
7(2)
2 Nature Of Expansive Soils 9(50)
2.1 Microscale Aspects of Expansive Soil Behavior
9(15)
2.1.1 The Clay Particle
10(5)
2.1.1.1 Mineral Composition
10(2)
2.1.1.2 Interlayer Bonding
12(1)
2.1.1.3 Isomorphous Substitution and Surface Charges
13(2)
2.1.2 Adsorbed Cations and Cation Hydration
15(2)
2.1.3 The Clay Micelle
17(2)
2.1.4 Crystalline and Osmotic Expansion
19(2)
2.1.5 Effect of Mineralogy on Plasticity of Soil
21(1)
2.1.6 Effect of Mineralogy on Expansion Potential
22(1)
2.1.7 Effect of Type of Cation on Expansion Potential
22(2)
2.2 Macroscale Aspects of Expansive Soil Behavior
24(6)
2.2.1 Development of Natural Soil Deposits
24(2)
2.2.2 Effect of Plasticity on Expansion Potential
26(1)
2.2.3 Effect of Soil Structure, Water Content, and Density on Expansion Potential
27(3)
2.3 Identification of Expansive Soils
30(10)
2.3.1 Methods Based on Physical Properties
30(6)
2.3.1.1 Methods Based on Plasticity
30(1)
2.3.1.2 Free Swell Test
31(1)
2.3.1.3 Potential Volume Change (PVC)
32(1)
2.3.1.4 Expansion Index (EI) Test
33(2)
2.3.1.5 Coefficient of Linear Extensibility (COLE)
35(1)
2.3.1.6 Standard Absorption Moisture Content (SAMC)
36(1)
2.3.2 Mineralogical Methods
36(1)
2.3.3 Chemical Methods
37(2)
2.3.3.1 Cation Exchange Capacity (CEC)
37(1)
2.3.3.2 Specific Surface Area (SSA)
38(1)
2.3.3.3 Total Potassium (TP)
39(1)
2.3.4 Comments on Identification Methods
39(1)
2.4 Characteristics of Expansive Soil Profiles
40(13)
2.4.1 Geographic Distribution of Expansive Soils
40(1)
2.4.2 Expansive Soil Profiles
40(19)
2.4.2.1 Welkom, South Africa
43(1)
2.4.2.2 Maryland, Australia
44(1)
2.4.2.3 Regina, Saskatchewan, Canada
44(2)
2.4.2.4 Front Range Area of Colorado, USA
46(6)
2.4.2.5 San Antonio, Texas, USA
52(1)
References
53(6)
3 Site Investigation 59(15)
3.1 Program of Exploration
59(9)
3.1.1 Reconnaissance Investigation
60(1)
3.1.2 Preliminary Investigation
60(1)
3.1.3 Design-Level Investigation
61(13)
3.1.3.1 Distribution of Borings
62(2)
3.1.3.2 Depth of Exploration
64(1)
3.1.3.3 Sampling Frequency and Depth
65(3)
3.2 Forensic Investigation
68(4)
References
72(2)
4 Soil Suction 74(45)
4.1 Soil Suction Components
74(8)
4.1.1 Matric Suction
76(4)
4.1.2 Osmotic Suction
80(2)
4.1.3 Total Suction
82(1)
4.2 Soil Water Characteristic Curve
82(8)
4.2.1 Mathematical Expressions for SWCC
84(2)
4.2.2 Soil Water Characteristic Curves for Expansive Soils
86(3)
4.2.3 Influence of Stress State on Soil Water Characteristic Relationships
89(1)
4.2.4 Effect of Suction on Groundwater Profiles
89(1)
4.3 Measurement of Matric Suction
90(15)
4.3.1 Tensiometers
92(2)
4.3.2 Axis Translation Technique
94(4)
4.3.2.1 Pressure Plate Apparatus
97(1)
4.3.2.2 Fredlund SWCC Device
97(1)
4.3.3 Filter Paper Method for Matric Suction
98(5)
4.3.3.1 Principle of Measurement
100(1)
4.3.3.2 Calibration Curves
101(1)
4.3.3.3 Filter Paper Hysteresis
102(1)
4.3.3.4 Time Required to Reach Equilibrium
102(1)
4.3.4 Thermal Conductivity Sensors
103(1)
4.3.5 Electrical Resistance Sensors
104(1)
4.4 Measurement of Osmotic Suction
105(2)
4.4.1 Osmotic Tensiometers
105(1)
4.4.2 Pore Fluid Extraction Technique
106(1)
4.5 Measurement of Total Suction
107(7)
4.5.1 Psychrometers
109(1)
4.5.1.1 Thermocouple Psychrometers
109(1)
4.5.1.2 Chilled Mirror Psychrometer
110(1)
4.5.2 Filter Paper Method for Total Suction
110(22)
4.5.2.1 Principle of Measurement
111(1)
4.5.2.2 Calibration Curves
111(1)
4.5.2.3 Time Required to Reach Equilibrium
112(2)
References
114(5)
5 State Of Stress And Constitutive Relationships 119(8)
5.1 State of Stress and Stress State Variables
119(5)
5.2 Stress—Volume Relationships
124(1)
5.3 Stress—Water Relationships
125(1)
References
126(1)
6 Oedometer Testing 127(25)
6.1 Consolidation-Swell and Constant Volume Tests
129(3)
6.2 Correction of Oedometer Test Data
132(8)
6.2.1 Correction for Oedometer Compressibility
133(4)
6.2.2 Correction for Specimen Disturbance in the CV Test
137(1)
6.2.3 Effect of the Corrections on Expansion Properties
138(2)
6.3 Relationship Between CS and CV Swelling Pressures (the m Method)
140(4)
6.4 Factors Influencing Oedometer Test Results
144(5)
6.4.1 Initial Stress State Conditions
145(1)
6.4.2 Soil Fatigue
146(1)
6.4.3 Initial Consolidation of Sample
146(1)
6.4.4 Time and Method of Inundation
147(1)
6.4.5 Storage of Samples
148(1)
6.4.6 Competency of Laboratory Personnel
149(1)
References
149(3)
7 Water Migration In Expansive Soils 152(30)
7.1 Water Flow in Unsaturated Soils
153(9)
7.1.1 Darcy's Law for Unsaturated Soils
153(1)
7.1.2 Water Mass Balance Equation
154(1)
7.1.3 Vertical Seepage in Unsaturated Soil
155(3)
7.1.4 Flow through Fractured Rocks and Bedding Planes
158(4)
7.2 Depth and Degree of Wetting
162(5)
7.2.1 Depth of Wetting
162(1)
7.2.2 Degree of Wetting
163(1)
7.2.3 Perched Water Tables in Layered Strata
164(1)
7.2.4 Wetting Profiles
165(2)
7.3 Determination of Final Water Content Profiles for Design
167(10)
7.3.1 Hand Calculation of Final Water Contents for Design
168(2)
7.3.2 Computer Modeling of Water Migration
170(7)
7.4 Challenges in Water Migration Modeling for Expansive Soils
177(1)
References
178(4)
8 Computation Of Predicted Heave 182(45)
8.1 Oedometer Methods
183(21)
8.1.1 The Heave Equation
184(2)
8.1.2 Computation of Free-Field Heave
186(9)
8.1.3 Computation of Heave under an Applied Load
195(1)
8.1.4 Computation of Design Heave
195(6)
8.1.5 Discussion of Earlier Oedometer Methods Proposed to Compute Heave
201(3)
8.1.5.1 Department of the Army (1983)
201(2)
8.1.5.2 Fredlund (1983)
203(1)
8.1.5.3 Nelson and Miller (1992)
203(1)
8.1.6 Comments on the Heave Index
204(1)
8.2 Soil Suction Methods
204(10)
8.2.1 McKeen (1992)
205(6)
8.2.2 Department of the Army (1983)
211(1)
8.2.3 Hamberg and Nelson (1984)
212(1)
8.2.4 Lytton (1994)
213(1)
8.3 Empirical Methods
214(1)
8.4 Progression of Heave with Time
214(8)
8.4.1 Hyperbolic Equation
214(7)
8.4.2 Use of Water Migration Modeling to Analyze Rate of Heave
221(1)
8.5 Free-Field Surface Movement for Shrink—Swell Soils
222(1)
8.6 Discussion of Heave Prediction
223(1)
References
224(3)
9 General Considerations For Foundation And Floor Design 227(31)
9.1 Risk and Life Cycle Costs
230(13)
9.1.1 Classification of Expansion Potential
230(4)
9.1.2 Risk Factor
234(9)
9.2 Foundation Alternatives
243(1)
9.3 Factors Influencing Design of Structures on Expansive Soils
243(10)
9.3.1 Tolerable Foundation Movement
243(8)
9.3.2 Design Life
251(1)
9.3.3 Design Active Zone and Degree of Wetting
252(1)
9.3.4 Site Grading
252(1)
9.4 Remedial Measures
253(2)
References
255(3)
10 Soil Treatment And Moisture Control 258(37)
10.1 Overexcavation and Replacement
259(5)
10.2 Prewetting Method
264(3)
10.3 Chemical Admixtures
267(8)
10.3.1 Lime Treatment
267(6)
10.3.1.1 Type of Lime
268(1)
10.3.1.2 Soil Factors
269(1)
10.3.1.3 Ettringite Formation
269(2)
10.3.1.4 Testing for Reactivity and Required Lime Content
271(1)
10.3.1.5 Curing Conditions
271(1)
10.3.1.6 Application Methods
272(1)
10.3.2 Cement Treatment
273(1)
10.3.3 Fly Ash Treatment
274(1)
10.3.4 Chemical Injection
274(1)
10.4 Moisture Control Alternatives
275(14)
10.4.1 Moisture Barriers
276(5)
10.4.1.1 Horizontal Moisture Barriers
278(1)
10.4.1.2 Vertical Moisture Barriers
279(2)
10.4.2 Subsurface Drains
281(2)
10.4.3 Surface Grading and Drainage
283(6)
10.5 Summary of Soil Treatment Methods
289(1)
References
290(5)
11 Design Methods For Shallow Foundations 295(25)
11.1 Spread Footing Foundations
295(13)
11.1.1 Computation of Footing Heave
297(2)
11.1.2 Spread Footing Design Examples
299(9)
11.2 Stiffened Slab Foundations
308(6)
11.2.1 Edge Heave and Center Heave
308(3)
11.2.2 Differential Heave
311(3)
11.3 Remedial Measures for Shallow Foundations
314(4)
11.3.1 Footing Foundations
314(3)
11.3.2 Stiffened Slab-on-Grade
317(1)
11.3.3 Other Methods
318(1)
References
318(2)
12 Design Methods For Deep Foundations 320(31)
12.1 Pier and Grade Beam Foundation
320(15)
12.1.1 Design Methods
324(10)
12.1.1.1 Rigid Pier Method
325(3)
12.1.1.2 APEX Method
328(6)
12.1.2 Load-Bearing Capacity
334(1)
12.2 Patented Piers
335(7)
12.2.1 Helical Piles
335(2)
12.2.2 Micropiles
337(3)
12.2.3 Push Piers
340(2)
12.3 Deep Foundation Design Examples
342(6)
12.3.1 Rigid Pier Design Example
342(3)
12.3.2 APEX Design Example
345(3)
12.3.3 Helical Pile Design Example
348(1)
12.4 Remedial Measures for Deep Foundations
348(2)
12.4.1 Pier and Grade Beam Foundation
349(1)
12.4.2 Underpinning
349(1)
References
350(1)
13 Floors And Exterior Flatwork 351(12)
13.1 Slabs-on-Grade
351(5)
13.2 Stiffened Slabs
356(1)
13.3 Structural Floors
357(1)
13.4 Exterior Slabs and Flatwork
358(1)
13.5 Remediation Techniques
359(3)
13.5.1 Structural Floor Systems
361(1)
13.5.2 Moisture Control
361(1)
13.5.3 Chemical Injection
361(1)
13.5.4 Isolation of the Slab
361(1)
13.5.5 Exterior Slabs
362(1)
References
362(1)
14 Lateral Pressure On Earth Retaining Structures 363(10)
14.1 Computation of Lateral Pressure from Expansive Soils
363(2)
14.2 Testing for Measuring Lateral Swelling Pressure
365(1)
14.3 Reduction of Lateral Swelling Pressure
366(1)
14.4 Design for Lateral Earth Pressure
367(3)
References
370(3)
Index 373
JOHN D. NELSON, has over 50 years of geotechnical engineering experience with emphasis in expansive soils.??He is Professor Emeritus of Civil Engineering at Colorado State University, and Principal Engineer at Engineering Analytics, Inc.

KUO CHIEH CHAO, has over 20 years of geotechnical experience in foundation design and construction on expansive soils. He is Vice President of Engineering Analytics, Inc. and Adjunct Professor at Colorado State University.

DANIEL D. OVERTON, has over 30 years of geotechnical engineering experience including foundation design for expansive soils. He is President of Engineering Analytics, Inc. and a Faculty Affiliate at Colorado State University.

ERIK J. NELSON, has over 30 years of experience in geotechnical engineering, foundation design, and forensic investigations for expansive soils. He is Vice President at Engineering Analytics, Inc.