Muutke küpsiste eelistusi

E-raamat: Foundation Systems for High-Rise Structures

(Technische Universitaet Darmstadt, Germany), (Indian Institute of Technology Bombay, Mumbai, Maharashtra, India), (Technische Universitaet Darmstadt, Germany)
  • Formaat: 314 pages
  • Ilmumisaeg: 19-Sep-2016
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781315351872
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 48,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 314 pages
  • Ilmumisaeg: 19-Sep-2016
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781315351872
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The book deals with the geotechnical analysis and design of foundation systems for high-rise buildings and other complex structures with a distinctive soil-structure interaction. The basics of the analysis of stability and serviceability, necessary soil investigations, important technical regulations and quality and safety assurance are explained and possibilities for optimised foundation systems are given. Additionally, special aspects of foundation systems such as geothermal activated foundation systems and the reuse of existing foundations are described and illustrated by examples from engineering practice.

Arvustused

"This book presents the theoretical basics of the analysis and design of most types of foundation systems for high-rise structures. Based on the authors scientific research and extensive experience, it explains their application in completed construction projects. Whats more, typical practical projects of high-rise structures have been provided by the authors at the end of each chapter."

-- Fayun Liang, Tongji University

Preface xiii
Authors xv
1 Introduction 1(2)
2 Basics of geotechnical analysis 3(24)
2.1 Soil-structure interaction
3(1)
2.2 Analysis according to Eurocode 7 (EC 7)
4(9)
2.2.1 Design situations
5(1)
2.2.2 Ultimate limit state (ULS) and serviceability limit state (SLS)
6(1)
2.2.3 Rules for combination factors
6(1)
2.2.4 General procedure of analysis
7(2)
2.2.5 Geotechnical categories
9(4)
2.3 Soil investigation according to Eurocode 7 (EC 7)
13(6)
2.3.1 Soil investigation program
14(2)
2.3.2 Soil investigation for foundation systems
16(2)
2.3.3 Soil investigation for excavations
18(1)
2.4 Guarantee of safety and optimization by the four-eye principle
19(2)
2.5 Observational method
21(1)
References
22(5)
3 Spread foundations 27(48)
3.1 Single and strip foundations
27(1)
3.2 Raft foundations
28(1)
3.3 Geotechnical analysis
28(33)
3.3.1 Basics
28(1)
3.3.2 Distribution of the contact pressure
29(12)
3.3.2.1 System rigidity
31(4)
3.3.2.2 Distribution of the contact pressure under rigid foundations according to Boussinesq
35(1)
3.3.2.3 Stress trapeze method
36(3)
3.3.2.4 Subgrade reaction modulus method
39(2)
3.3.2.5 Stiffness modulus method
41(1)
3.3.3 Geotechnical analysis
41(20)
3.3.3.1 Analysis of safety against loss of balance because of overturning
42(1)
3.3.3.2 Analysis of safety against sliding
43(1)
3.3.3.3 Analysis of safety against base failure
44(7)
3.3.3.4 Analysis of safety against buoyancy
51(1)
3.3.3.5 Analysis of foundation rotation and limitation of the open gap
52(1)
3.3.3.6 Analysis of horizontal displacements
53(1)
3.3.3.7 Analysis of settlements and differential settlements
53(1)
3.3.3.8 Simplified analysis of spread foundations in standard cases
54(7)
3.4 Examples of spread foundations from engineering practice
61(9)
3.4.1 High-rise building complex of Zurich Assurance
62(1)
3.4.2 Westend Gate
63(1)
3.4.3 Silver Tower
64(3)
3.4.4 Frankfurt Bureau Centre (FBC)
67(2)
3.4.5 Twin towers of Deutsche Bank
69(1)
References
70(5)
4 Deep foundations 75(40)
4.1 Pile types
75(1)
4.2 Construction
76(4)
4.3 Geotechnical analysis
80(19)
4.3.1 Basics
80(2)
4.3.2 Single piles with axial loads
82(2)
4.3.3 Pile groups with axial loads
84(2)
4.3.4 Single piles with horizontal loads
86(2)
4.3.5 Pile groups with horizontal loads
88(3)
4.3.6 Empirical values for axial loaded piles
91(3)
4.3.7 Pile load tests
94(3)
4.3.8 Special methods for analysis
97(1)
4.3.9 Negative skin friction
97(1)
4.3.10 Serviceability limit state (SLS)
98(1)
4.4 Examples of classic pile foundations from engineering practice
99(11)
4.4.1 Commerzbank
99(1)
4.4.2 PalaisQuartier
99(3)
4.4.3 International Business Centre Solomenka
102(8)
References
110(5)
5 Combined pile-raft foundation (CPRF) 115(50)
5.1 Bearing and deformation behavior
115(4)
5.2 Calculation methods
119(1)
5.3 Geotechnical analysis
120(4)
5.3.1 Ultimate limit state (ULS)
120(1)
5.3.2 Serviceability limit state (SLS)
121(1)
5.3.3 Pile load tests
121(3)
5.3.3.1 Basics
121(1)
5.3.3.2 Examples
121(3)
5.4 CPRF guideline
124(1)
5.5 Monitoring of a CPRF
124(1)
5.6 Examples from engineering practice
124(37)
5.6.1 Messe Torhaus
125(3)
5.6.2 Messeturm
128(5)
5.6.3 DZ-Bank
133(2)
5.6.4 American Express
135(1)
5.6.5 Japan Center
135(2)
5.6.6 Kastor and Pollux
137(1)
5.6.7 Treptowers
138(7)
5.6.8 Main Tower
145(2)
5.6.9 Sony Center
147(1)
5.6.10 Victoria-Turm
147(1)
5.6.11 City Tower
147(4)
5.6.12 Darmstadtium
151(2)
5.6.13 Mirax Plaza
153(3)
5.6.14 Federation Tower
156(2)
5.6.15 Exhibition Hall 3
158(3)
References
161(4)
6 Dynamic behavior of foundation systems 165(82)
6.1 Introduction to dynamic aspect of deep foundation system
165(3)
6.2 Dynamic soil parameters
168(9)
6.2.1 Determination of dynamic soil parameters
169(8)
6.2.1.1 Group A
169(1)
6.2.1.2 Group B
169(1)
6.2.1.3 Group C
170(1)
6.2.1.4 Following consideration should be made to determine in situ dynamic properties of soil
170(1)
6.2.1.5 Comparison of laboratory and field test results
171(1)
6.2.1.6 Stress-strain behavior of cyclically loaded soil
171(6)
6.3 Free-field ground response analysis
177(6)
6.3.1 Parameters influencing ground response analysis
179(1)
6.3.1.1 Main factors that influence local site effect
179(1)
6.3.2 Wave propagation and site amplification
180(1)
6.3.3 Assumptions of analysis
180(1)
6.3.4 Different approaches for free- field ground response analysis
181(1)
6.3.4.1 Linear approach
181(1)
6.3.4.2 Equivalent-linear approach
181(1)
6.3.4.3 Nonlinear approach
182(1)
6.3.5 Steps to be followed for the free-field analysis
182(1)
6.4 Liquefaction of soil
183(7)
6.4.1 Introduction
183(2)
6.4.2 Evaluation of liquefaction potential of soil
185(1)
6.4.3 Liquefaction susceptibility criteria
186(1)
6.4.4 Simplified approaches for estimating liquefaction potential of cohesionless soils based on standard penetration test (SPT)
187(3)
6.4.4.1 Evaluation of cyclic stress ratio (CSR)
187(1)
6.4.4.2 Evaluation of cyclic resistance ratio (CRR)
188(1)
6.4.4.3 Evaluation of liquefaction potential or cyclic failure of silts and clays
188(2)
6.5 Liquefaction hazard mapping
190(2)
6.5.1 Recent advances in liquefaction hazard mapping
191(1)
6.5.2 Generalized procedure for liquefaction hazard mapping
192(1)
6.6 Seismic analysis of single pile
192(15)
6.6.1 Types of pile foundation
193(1)
6.6.1.1 Classification based on the mode of transfer of load
193(1)
6.6.1.2 Classification based on type of piles
193(1)
6.6.2 Failure mechanism of single pile
194(2)
6.6.3 Pseudo-static analysis of pile
196(3)
6.6.4 Dynamic forces on pile foundation
199(8)
6.6.4.1 Liquefaction-induced forces on pile foundation
200(2)
6.6.4.2 Design approaches for pile foundation
202(1)
6.6.4.3 Analysis of pile in liquefying soil considering failure criteria
203(4)
6.6.5 Performance of pile foundations during recent earthquakes
207(1)
6.7 Seismic analysis of pile groups
207(6)
6.7.1 Failure mechanism of pile group
209(2)
6.7.1.1 Formation of plastic hinge both at top and bottom of pile group
209(1)
6.7.1.2 Pile group passing through inclined, liquefiable sand layer underlain by bedrock and overlain by non-liquefiable sand
210(1)
6.7.1.3 Pile group passing through inclined, liquefiable sand layer underlain by dense sand and overlain by non-liquefiable sand
210(1)
6.7.2 Pile group pseudo-static analysis
211(2)
6.8 Seismic soil-pile structure interaction
213(3)
6.8.1 Three methods of analyzing seismic soil-pile structure interaction
214(1)
6.8.1.1 Elastic continuum method
214(1)
6.8.1.2 Nonlinear Winkler foundation method
215(1)
6.8.1.3 Finite element method
215(1)
6.8.2 Soil-pile structure interaction approach described by various researchers
215(1)
6.8.2.1 Concept of pile failure by [ 71]
216(1)
6.9 Seismic analysis of combined pile-raft foundation (CPRF)
216(2)
6.9.1 Advantages of CPRF under dynamic conditions
217(1)
6.10 Numerical dynamic analysis
218(4)
6.10.1 Steps to be followed for the design of single pile, pile group and CPRF
218(1)
6.10.2 Numerical dynamic analysis of oil tank foundation: A case study
219(3)
6.11 Dynamic centrifuge tests on piles and CPRF
222(1)
6.12 Seismic analysis of pier and well foundation
222(6)
6.12.1 One-dimensional (1D) spring dashpot analysis of soil-well-pier foundation
226(1)
6.12.2 Finite element analysis of soil-well-pier foundation
227(1)
6.13 Codal provisions
228(7)
6.13.1 Codal provision for ground response analysis
228(4)
6.13.1.1 NEHRP (2009)
229(1)
6.13.1.2 ASCE 7 (2010)
230(2)
6.13.1.3 Indian standard code (IS 1893-Part 1, 2002)
232(1)
6.13.2 Design of pile foundation
232(15)
6.13.2.1 Development of Japanese code of practice (1972-1996)
232(1)
6.13.2.2 Japanese highway bridge specification
233(2)
6.13.2.3 Eurocode 8 (1998)
235(1)
6.13.2.4 NEHRP (2000)
235(1)
References
235(12)
7 Special foundations 247(30)
7.1 Geothermally activated foundation systems
247(12)
7.1.1 Physical basics
248(1)
7.1.2 Solid absorber
249(1)
7.1.3 Analysis and design
250(1)
7.1.4 Construction
251(2)
7.1.5 Examples from engineering practice
253(6)
7.1.5.1 PalaisQuartier
253(3)
7.1.5.2 Main Tower
256(3)
7.2 Reuse of foundations
259(8)
7.2.1 Objectives of reuse
259(1)
7.2.2 Geotechnical analysis
260(1)
7.2.3 Necessary investigations
261(1)
7.2.4 Examples from engineering practice
261(8)
7.2.4.1 Reichstag
261(4)
7.2.4.2 Hessian parliament
265(2)
7.3 Shaft foundations
267(2)
7.4 Caisson foundations
269(2)
7.4.1 Open caisson foundations
269(1)
7.4.2 Air chamber caisson foundations
270(1)
7.5 Offshore foundations
271(1)
References
272(5)
Appendix A 277(14)
Index 291
Professor Dr.-Ing. Rolf Katzenbach is the Director of the Institute and the Laboratory of Geotechnics at the Technische Universität Darmstadt, Germany and the Chairman of TC 212 on Deep Foundations of ISSMGE. Dipl.-Ing.





Steffen Leppla is a scientific research assistant at the Institute and Laboratory of Geotechnics of Technische Universität Darmstadt, Germany.



Professor Deepankar Choudhury is a full Professor at IIT Bombay, Mumbai, India. He is the Secretary of TC 212 on Deep Foundations, and of TC 207 Soil Structure Interaction and Retaining Walls of ISSMGE.