Muutke küpsiste eelistusi

E-raamat: Foundations of Astrophysics

(Ohio State University), (Ohio State University)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 27-Aug-2020
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108935012
  • Formaat - PDF+DRM
  • Hind: 74,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 27-Aug-2020
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108935012

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Foundations of Astrophysics provides a contemporary and complete introduction to astrophysics for astronomy and physics majors. With a logical presentation and conceptual and quantitative end-of-chapter problems, the material is accessible to introductory astrophysics students taking a two-semester survey course. Starting with the motions of the solar system and a discussion of the interaction of matter and light, the authors explore the physical nature of objects in the solar system, and the exciting new field of exoplanets. The second half of their text covers stellar, galactic, and extragalactic astronomy, followed by a brief discussion of cosmology. This is a reissue of the original 2010 edition, which has established itself as one of the market-leading astrophysics texts, well known for its clarity and simplicity. It has introduced thousands of physical science students to the breadth of astronomy, and helped prepare them for more advanced studies.

Arvustused

'I found this book to be appropriate for our 2-course introduction to astrophysics. The level is appropriate and it is very up to date.' Christopher Theissen, University of California San Diego

Muu info

A contemporary and complete introduction to astrophysics for astronomy and physics majors taking a two-semester survey course.
Preface xi
1 Early Astronomy
1(28)
1.1 The Celestial Sphere
1(2)
1.2 Coordinate Systems on a Sphere
3(6)
1.3 Celestial Motions
9(7)
1.4 Basic Timekeeping
16(1)
1.5 Solar and Sidereal Time
17(8)
1.6 Calendars
25(4)
2 Emergence Of Modern Astronomy
29(32)
2.1 Early Greek Astronomy
29(5)
2.2 Ptolemaic Astronomy
34(4)
2.3 Copemican Astronomy
38(9)
2.4 Galileo: The First Modern Scientist
47(3)
2.5 Kepler's Laws of Planetary Motion
50(2)
2.6 Proof of the Earth's Motion
52(9)
2.6.1 Rotation of the Earth
53(4)
2.6.2 Revolution of the Earth
57(4)
3 Orbital Mechanics
61(22)
3.1 Deriving Kepler's Laws
62(12)
3.1.1 Kepler's Second Law
62(4)
3.1.2 Kepler's First Law
66(6)
3.1.3 Kepler's Third Law
72(2)
3.2 Orbital Energetics
74(1)
3.3 Orbital Speed
75(3)
3.4 The Virial Theorem
78(5)
4 The Earth-Moon System
83(28)
4.1 Precession
83(1)
4.2 Tides
84(8)
4.3 Limits on the Size of Orbits
92(5)
4.3.1 Minimum Orbit Size: Roche Limit
93(2)
4.3.2 Maximum Orbit Size: Hill Radius
95(2)
4.4 Phases of the Moon
97(2)
4.5 Rotation of the Moon
99(3)
4.6 Eclipses
102(9)
5 Interaction Of Radiation And Matter
111(35)
5.1 Atomic Structure
111(7)
5.2 Atomic Processes
118(3)
5.3 Emission and Absorption Spectra
121(6)
5.4 The Equation of Radiative Transfer
127(3)
5.5 The Curve of Growth
130(3)
5.6 Local Thermodynamic Equilibrium
133(4)
5.7 Blackbody Radiation
137(9)
6 Astronomical Detection Of Light
146(26)
6.1 The Telescope as a Camera
146(5)
6.2 Refracting and Reflecting Telescopes
151(4)
6.3 Quality of Images
155(4)
6.4 Astronomical Instruments and Detectors
159(2)
6.5 Observations and Photon Counting
161(4)
6.6 Observations at Other Wavelengths
165(3)
6.7 Modern Telescopes
168(4)
7 The Sun
172(22)
7.1 Observable Layers of the Sun
172(9)
7.2 Solar Activity
181(8)
7.3 Angular Momentum of the Sun
189(5)
8 Overview Of The Solar System
194(15)
8.1 Two Types of Planets
194(2)
8.2 Physical Properties of Planets
196(7)
8.3 Formation of the Solar System
203(6)
9 Earth And Moon
209(23)
9.1 The Earth's Interior
209(4)
9.2 The Earth's Atmosphere
213(7)
9.3 The Earth's Magnetosphere
220(1)
9.4 The Moon's Interior and Surface
221(6)
9.5 The Origin of the Moon
227(5)
Appendix: Radioactive Dating
228(4)
10 The Planets
232(34)
10.1 Terrestrial Planets
232(11)
10.1.1 Mercury
232(3)
10.1.2 Venus
235(4)
10.1.3 Mars
239(4)
10.2 Jovian Planets
243(16)
10.2.1 Jupiter and Saturn
244(8)
10.2.2 Satellites of Jupiter and Saturn
252(4)
10.2.3 Uranus and Neptune
256(3)
10.3 Planetary Rings
259(7)
11 Small Bodies In The Solar System
266(24)
11.1 Asteroids
266(5)
11.2 Trans-Neptunian Objects
271(6)
11.3 Comets
277(3)
11.4 Meteoroids and Dust
280(10)
12 The Solar System In Perspective
290(17)
12.1 Comparative Planetology Within the Solar System
290(2)
12.2 Origin of the Solar System
292(2)
12.3 Detecting Exoplanets
294(10)
12.4 Properties of Exoplanets
304(3)
13 Properties Of Stars
307(29)
13.1 How Far Is a Star?
307(2)
13.2 How Bright Is a Star?
309(4)
13.3 How Hot Is a Star?
313(5)
13.4 How Big Is a Star?
318(4)
13.5 How Massive Is a Star?
322(8)
13.5.1 Visual Binaries
322(4)
13.5.2 Spectroscopic Binaries
326(3)
13.5.3 Eclipsing Binaries
329(1)
13.6 How Are Mass, Radius, and Luminosity Related?
330(6)
Appendix: Determination of Bolometric Corrections
332(4)
14 Stellar Atmospheres
336(14)
14.1 Hydrostatic Equilibrium
336(3)
14.2 Spectral Classification
339(4)
14.3 Luminosity Classes
343(2)
14.4 Hertzsprung--Russell Diagrams
345(5)
15 Stellar Interiors
350(26)
15.1 Equations of Stellar Structure
350(9)
15.1.1 Energy Transport in Stars
352(1)
15.1.2 Radiative Transport
353(3)
15.1.3 Convective Transport
356(3)
15.2 Energy Generation in Stars
359(3)
15.3 Nuclear Fusion Reactions
362(7)
15.4 Modeling Stellar Interiors
369(7)
Appendix: Random Walk Processes
372(4)
16 The Interstellar Medium
376(17)
16.1 Interstellar Dust
376(4)
16.1.1 Evidence for Interstellar Dust
376(2)
16.1.2 Observable Effects of Dust on Starlight
378(2)
16.2 Interstellar Gas
380(4)
16.3 The Physics of Non-LTE Gases
384(9)
16.3.1 Ionization Balance
384(3)
16.3.2 Thermal Balance
387(6)
17 Formation And Evolution Of Stars
393(16)
17.1 Star Formation
393(5)
17.2 Evolution of Sun-like Stars
398(4)
17.3 Pulsating Variable Stars
402(7)
18 Stellar Remnants
409(24)
18.1 White Dwarfs
410(6)
18.1.1 Degeneracy Pressure
410(2)
18.1.2 Mass--Radius Relationship
412(4)
18.2 Neutron Stars and Pulsars
416(7)
18.3 Black Holes
423(3)
18.4 Novae and Supernovae
426(7)
19 Our Galaxy
433(34)
19.1 Overview: Morphology of Our Galaxy
433(6)
19.2 Overview: Kinematics and Dynamics of our Galaxy
439(5)
19.3 Local Stellar Motions
444(4)
19.4 The Local Standard of Rest
448(3)
19.5 Differential Rotation of our Galaxy
451(5)
19.6 Determining the Rotation Curve
456(5)
19.7 The Nucleus of our Galaxy
461(6)
20 Galaxies
467(22)
20.1 Galaxy Classification
468(6)
20.2 Galaxy Spectra
474(6)
20.3 Supermassive Black Holes in Galaxies
480(2)
20.4 Distances to Galaxies
482(2)
20.5 The Hubble Law
484(5)
21 Active Galaxies
489(22)
21.1 Types of Active Galaxies
490(7)
21.1.1 Seyfert Galaxies
490(1)
21.1.2 Quasars
491(4)
21.1.3 Radio Galaxies
495(2)
21.2 Accretion by Supermassive Black Holes
497(4)
21.2.1 Energetics
497(1)
21.2.2 The Eddington Limit
497(2)
21.2.3 Accretion Disks
499(2)
21.3 The Structure of AGNs and Unified Models
501(2)
21.4 Quasars over Cosmic History
503(2)
21.5 Probing the Intergalactic Medium
505(6)
Appendix: Superluminal Radio Sources
506(5)
22 Clusters And Superclusters
511(15)
22.1 Clusters of Galaxies
511(4)
22.2 When Galaxies Collide!
515(5)
22.3 Superclusters and Voids
520(6)
23 Cosmology
526(25)
23.1 Basic Cosmological Observations
527(6)
23.2 Cosmology a la Newton
533(3)
23.3 Cosmology a la Einstein
536(7)
23.4 Metrics of Spacetime
543(3)
23.5 The Friedmann Equation
546(5)
24 History Of The Universe
551(24)
24.1 The Consensus Model
551(8)
24.2 The Accelerating Universe
559(5)
24.3 The Early Universe
564(4)
24.4 The Very Early Universe
568(7)
A Astronomical Data 575(8)
Bibliography 583(2)
Credits 585(4)
Index 589
Barbara Ryden received her Ph.D. in astrophysical sciences from Princeton University, New Jersey. After postdocs at the HarvardSmithsonian Center for Astrophysics and the Canadian Institute for Theoretical Astrophysics, she joined the astronomy faculty at The Ohio State University, where she is now a full professor. She has more than twenty-five years of experience in teaching, at levels ranging from introductory undergraduate courses to advanced graduate seminars. She won the Chambliss Astronomical Writing Award for her textbook Introduction to Cosmology (Cambridge, 2016). Bradley M. Peterson received his Ph.D. from the University of Arizona. He was a member of the astronomy faculty at The Ohio State University from 1980 until his retirement in 2015, after serving as Department Chair for nine years. He received the Distinguished Scholar Award from Ohio State; the Outstanding Achievement Award from his alma mater, the University of Minnesota; and the NASA Exceptional Service Medal. He was a community co-chair for the Science and Technology Definition Team for the Large, Ultraviolet, Optical, Infrared Surveyor (LUVOIR), a large mission-concept study for NASA Astrophysics, and is the author of An Introduction to Active Galactic Nuclei (Cambridge, 1997).