Muutke küpsiste eelistusi

E-raamat: Foundations for Microstrip Circuit Design

  • Formaat: EPUB+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 01-Feb-2016
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781118936177
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 128,38 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 01-Feb-2016
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781118936177
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Building on the success of the previous three editions, Foundations for Microstrip Circuit Design offers extensive new, updated and revised material based upon the latest research. Strongly design-oriented, this fourth edition provides the reader with a fundamental understanding of this fast expanding field making it a definitive source for professional engineers and researchers and an indispensable reference for senior students in electronic engineering.

Topics new to this edition: microwave substrates, multilayer transmission line structures, modern EM tools and techniques, microstrip and planar transmision line design, transmission line theory, substrates for planar transmission lines, Vias, wirebonds, 3D integrated interposer structures, computer-aided design, microstrip and power-dependent effects, circuit models, microwave network analysis, microstrip passive elements, and slotline design fundamentals.
Preface xxiii
Acknowledgements xxv
1 Introduction to Design Using Microstrip and Planar Lines 1(18)
1.1 Introduction
1(1)
1.2 Origins of Microstrip
2(2)
1.3 RF and Microwave Modules
4(9)
1.3.1 Reference LO Section
4(3)
1.3.2 Frequency Conversion Section
7(4)
1.3.3 Intermediate Frequency Section
11(1)
1.3.4 Frequency Planning
12(1)
1.3.5 Summary
13(1)
1.4 Interconnections on RF and Microwave Integrated Circuits
13(2)
1.5 High-speed Digital Interconnections
15(3)
1.6 Summary
18(1)
References
18(1)
2 Fundamentals of Signal Transmission on Interconnects 19(32)
2.1 Introduction
19(1)
2.2 Transmission Lines and Interconnects
19(1)
2.3 Interconnects as Part of a Packaging Hierarchy
20(1)
2.4 The Physical Basis of Interconnects
21(2)
2.4.1 What an Interconnect is and How Information is Transmitted
22(1)
2.5 The Physics, a Guided Wave
23(9)
2.5.1 Transmission of a Pulse
23(3)
2.5.2 Transverse Electromagnetic Lines
26(1)
2.5.3 Multimoding
27(1)
2.5.4 The Effect of Dielectric
28(1)
2.5.5 Dielectric Loss Tangent, tan δ
28(1)
2.5.6 Magnetic Material Effect
29(1)
2.5.7 Frequency-dependent Charge Distribution
30(1)
2.5.8 Dispersion
31(1)
2.6 When an Interconnect Should be Treated as a Transmission Line
32(2)
2.7 The Concept of RF Transmission Lines
34(1)
2.8 Primary Transmission Line Constants
34(1)
2.9 Secondary Constants for Transmission Lines
35(2)
2.10 Transmission Line Impedances
37(1)
2.11 Reflection
38(3)
2.11.1 Reflection and Voltage Standing-wave Ratio
38(1)
2.11.2 Forward- and Backward-traveling Pulses
39(1)
2.11.3 Effect on Signal Integrity
40(1)
2.12 Multiple Conductors
41(3)
2.13 Return Currents
44(3)
2.13.1 Common Impedance Coupling
46(1)
2.14 Modeling of Interconnects
47(2)
2.15 Summary
49(1)
References
50(1)
3 Microwave Network Analysis 51(25)
3.1 Introduction
51(1)
3.2 Two-port Networks
51(4)
3.2.1 Reciprocity, Symmetry, Passivity, and Linearity
52(1)
3.2.2 Two-ports and Voltage and Current
52(1)
3.2.3 ABCD Matrix Description of Two-port Networks
53(2)
3.3 Scattering Parameter Theory
55(15)
3.3.1 Introduction
55(1)
3.3.2 Network Parameters
56(1)
3.3.3 Normalized Scattering Parameters
57(1)
3.3.4 Scattering Parameters for a Two-port Network
58(2)
3.3.5 Definitions of Two-port S Parameters
60(1)
3.3.6 Evaluation of Scattering Parameters
61(1)
3.3.7 Multiport S Parameters
62(1)
3.3.8 Three-port S Parameters
63(2)
3.3.9 Cascaded Two-port Networks
65(2)
3.3.10 Conversion between S Parameters and ABCD Parameters
67(1)
3.3.11 Return Loss
68(1)
3.3.12 Insertion Loss
69(1)
3.4 Signal-flow Graph Techniques and S Parameters
70(4)
3.4.1 Signal-flow Graphs
71(1)
3.4.2 Simplification and Reduction of SFGs
72(2)
3.5 Summary
74(1)
References
74(2)
4 Transmission Line Theory 76(13)
4.1 Introduction
76(1)
4.2 Transmission Line Theory
76(5)
4.2.1 Half-, Quarter- and Eighth-wavelength Lines
77(1)
4.2.2 Simple (Narrowband) Matching
78(1)
4.2.3 Equivalent Two-port Networks
79(2)
4.3 Chain (ABCD) Parameters fora Uniform Length of Loss-free Transmission Line
81(1)
4.4 Change in Reference Plane
82(1)
4.5 Working With a Complex Characteristic Impedance
83(4)
4.5.1 Traveling Waves
84(1)
4.5.2 Pseudo Waves
85(1)
4.5.3 Power Waves
86(1)
4.5.4 Summary
87(1)
4.6 Summary
87(1)
References
88(1)
5 Planar Interconnect Technologies 89(31)
5.1 Introductory Remarks
89(1)
5.2 Microwave Frequencies and Applications
89(2)
5.3 Transmission Line Structures
91(7)
5.3.1 Imageline
92(1)
5.3.2 Microstrip
93(1)
5.3.3 Finline (E-plane Circuits)
94(1)
5.3.4 Inverted Microstrip
94(1)
5.3.5 Slotline
95(1)
5.3.6 Trapped Inverted Microstrip
95(1)
5.3.7 Coplanar Waveguide
95(1)
5.3.8 CPS and Differential Line
96(1)
5.3.9 Stripline
96(1)
5.3.10 Summary of Interconnect Properties
97(1)
5.4 Substrates for Planar Transmission Lines
98(4)
5.4.1 Substrate Choices
98(2)
5.4.2 FR4 (PCB)
100(1)
5.4.3 Ceramic Substrates
100(1)
5.4.4 Sapphire — the 'Benchmark' Substrate Material
101(1)
5.5 Thin-film Modules
102(2)
5.5.1 Plate-through Technique
102(1)
5.5.2 Etch-back Technique
103(1)
5.5.3 Equipment Required
103(1)
5.5.4 Thin Resistive Films
103(1)
5.6 Thick-film Modules
104(1)
5.6.1 Pastes, Printing, and Processing for Thick-film Modules
104(1)
5.7 Monolithic Technology
105(3)
5.7.1 Introduction
105(1)
5.7.2 Multilayer Interconnect
106(1)
5.7.3 Metallization
107(1)
5.7.4 Low-k Dielectrics
108(1)
5.7.5 Hybrid and Monolithic Approaches Compared
108(1)
5.8 Printed Circuit Boards
108(3)
5.8.1 Organic PCBs
109(1)
5.8.2 Ceramic PCBs
110(1)
5.9 Multichip Modules
111(5)
5.9.1 MCM-L Substrates
112(1)
5.9.2 MCM-C Substrates
112(1)
5.9.3 MCM-D Substrates
112(1)
5.9.4 Characterization of Interconnects on a Multichip Module: A Case Study
113(3)
5.9.5 MCM Summary
116(1)
5.10 Summary
116(1)
References
117(3)
6 Microstrip Design at Low Frequencies 120(37)
6.1 The Microstrip Design Problem
120(2)
6.1.1 A Transistor Amplifier Input Network
120(1)
6.1.2 The Geometry of Microstrip
121(1)
6.2 The Quasi-TEM Mode of Propagation
122(2)
6.3 Static-TEM Parameters
124(3)
6.3.1 The Characteristic Impedance Z0
124(1)
6.3.2 The Effective Microstrip Permittivity &epsiloneff
125(1)
6.3.3 Synthesis: The Width-to-height Ratio w/h
126(1)
6.3.4 Wavelength λ, and Physical Length l
127(1)
6.4 Effective Permittivity and Characteristic Impedance of Microstrip
127(5)
6.4.1 Formulas for Effective Permittivity and Characteristic Impedance
128(2)
6.4.2 A Convenient Approximation of Effective Permittivity
130(2)
6.5 Filling Factor
132(2)
6.6 Approximate Graphically Based Synthesis
134(3)
6.7 Formulas for Accurate Static-TEM Design Calculations
137(2)
6.7.1 Synthesis Formulas (Z0 and εr Given)
137(1)
6.7.2 Analysis Formulas (w/h and εr Given)
138(1)
6.7.3 Overall Accuracies to be Expected From the Previous Expressions
139(1)
6.8 Electromagnetic Analysis-based Techniques
139(1)
6.9 A Worked Example of Static-TEM Synthesis
140(1)
6.9.1 Graphical Determination
140(1)
6.9.2 Accurately Calculated Results
141(1)
6.9.3 Final Dimensions of the Microstrip Element
141(1)
6.10 Microstrip on a Dielectrically Anisotropic Substrate
141(5)
6.11 Microstrip and Magnetic Materials
146(1)
6.12 Effects of Finite Strip Thickness, Metallic Enclosure, and Manufacturing Tolerances
147(4)
6.12.1 Effects of Finite Strip Thickness
147(1)
6.12.2 Alternative Treatment of the Effect of Strip Thickness
148(1)
6.12.3 Effects of a Metallic Enclosure
149(1)
6.12.4 Effects Due to Manufacturing Tolerances
150(1)
6.13 Pulse Propagation along Microstrip Lines
151(1)
6.14 Recommendations Relating to the Static-TEM Approaches
152(2)
6.14.1 The Principal Static-TEM Synthesis Formulas
152(1)
6.14.2 Microstrip on a Sapphire (Anisotropic) Substrate
153(1)
6.14.3 Design Strategies Accommodating Manufacturing Tolerances
154(1)
6.15 Summary
154(1)
References
155(2)
7 Microstrip at High Frequencies 157(43)
7.1 Introduction
157(1)
7.2 Frequency-dependent Effects
157(12)
7.2.1 Frequency-dependent Charge Distribution
158(1)
7.2.2 Dielectric Dispersion and Current Bunching
158(5)
7.2.3 Skin Effect
163(4)
7.2.4 Surface and Edge Effects
167(2)
7.3 Approximate Calculations Accounting for Dispersion
169(4)
7.4 Accurate Design Formulas
173(9)
7.4.1 Edwards and Owens' Expressions
173(2)
7.4.2 Expressions Suitable for Millimeter-wave Design
175(4)
7.4.3 Dispersion Curves Derived from Simulations
179(1)
7.4.4 Designs Requiring Dispersion Calculations, Worked Example
180(2)
7.5 Effects due to Ferrite and to Dielectrically Anisotropic Substrates
182(1)
7.5.1 Effects of Ferrite Substrates
182(1)
7.5.2 Effects of a Dielectrically Anisotropic Substrate
182(1)
7.6 Field Solutions
183(3)
7.6.1 One Example of a 'Classic' Frequency-dependent Computer-based Field Solution
183(1)
7.6.2 Asymmetry Effects
184(1)
7.6.3 Time-domain Approaches
184(2)
7.7 Frequency Dependence of Microstrip Characteristic Impedance
186(4)
7.7.1 Different Definitions and Trends with Increasing Frequency
186(1)
7.7.2 Use of the Planar Waveguide Model (Figure 7.24)
187(1)
7.7.3 A First-order Expression for Zo(f)
188(1)
7.7.4 A Second-order Expression for Zo(f)
188(1)
7.7.5 A Further Alternative Expression
189(1)
7.7.6 A Design Algorithm for Microstrip Width
189(1)
7.8 Multimoding and Limitations on Operating Frequency
190(4)
7.8.1 The Lowest-order Transverse Microstrip Resonance
190(1)
7.8.2 The TM Mode Limitation
191(3)
7.9 Design Recommendations
194(2)
7.10 Summary
196(1)
References
196(4)
8 Loss and Power-dependent Effects in Microstrip 200(27)
8.1 Introduction
200(1)
8.2 Q Factor as a Measure of Loss
200(8)
8.2.1 Definition
200(2)
8.2.2 Loaded Q Factor
202(1)
8.2.3 External Q Factor of an Open-circuited Microstrip Resonator
202(6)
8.3 Power Losses and Parasitic Effects
208(8)
8.3.1 Conductor Loss
209(1)
8.3.2 Dielectric Loss
210(1)
8.3.3 Radiation
211(1)
8.3.4 Q Factor and Attenuation Coefficient
212(1)
8.3.5 Surface-wave Propagation
213(1)
8.3.6 Parasitic Coupling
214(1)
8.3.7 Radiation and Surface-wave Losses from Various Discontinuities
214(1)
8.3.8 Losses in Microstrip on Semi-insulating GaAs
214(2)
8.4 Superconducting Microstrip Lines
216(3)
8.5 Power-handling Capabilities
219(2)
8.5.1 Maximum Average Power Pma Under CW Conditions
219(1)
8.5.2 Peak (Pulse) Power-handling Capability
220(1)
8.6 Passive Intermodulation Distortion
221(3)
8.6.1 Origins of PIM
221(1)
8.6.2 PIM on Microstrip Transmission Lines
222(1)
8.6.3 Design Guidelines
223(1)
8.7 Summary
224(1)
References
224(3)
9 Discontinuities in Microstrip 227(41)
9.1 Introduction
227(1)
9.2 The Main Discontinuities
228(8)
9.2.1 The Open Circuit
228(4)
9.2.2 The Series Gap
232(2)
9.2.3 Microstrip Short Circuits
234(2)
9.2.4 Further Discontinuities
236(1)
9.3 Bends in Microstrip
236(5)
9.3.1 The Right-angled Bend or "Corner"
236(2)
9.3.2 Mitered or "Matched" Microstrip Bends, Compensation Techniques
238(3)
9.4 Step Changes in Width (Impedance Step)
241(2)
9.4.1 The Symmetrical Microstrip Step
241(2)
9.4.2 The Asymmetrical Step in Microstrip
243(1)
9.5 The Narrow Transverse Slit
243(2)
9.6 Microstrip Junctions
245(16)
9.6.1 The Microstrip T Junction
245(3)
9.6.2 Compensated T Junctions
248(1)
9.6.3 Cross Junctions
248(3)
9.6.4 Open Circuits and Series Gaps
251(5)
9.6.5 Other Discontinuities
256(1)
9.6.6 Cross and T Junctions
257(2)
9.6.7 Radial Bends
259(1)
9.6.8 Frequency Dependence of via Parameters
260(1)
9.7 Recommendations for the Calculation of Discontinuities
261(5)
9.7.1 Foreshortened Open Circuits
261(2)
9.7.2 Series Gaps
263(1)
9.7.3 Short Circuits
263(1)
9.7.4 Right-angled and Mitered Bends
264(1)
9.7.5 Transverse Slit
264(1)
9.7.6 The T Junction
264(1)
9.7.7 The Asymmetric Cross Junction
265(1)
9.8 Summary
266(1)
References
266(2)
10 Parallel-coupled Microstrip Lines 268(38)
10.1 Introduction
268(1)
10.2 Coupled Transmission Line Theory
269(9)
10.2.1 Parallel-coupled Transmission Lines
269(1)
10.2.2 Even and Odd Modes
269(2)
10.2.3 Transmission Line Equations
271(6)
10.2.4 Capacitance Matrix Extraction
277(1)
10.3 Formulas for Characteristic Impedance of Coupled Lines
278(12)
10.3.1 Derivation of Bryant and Weiss
279(1)
10.3.2 Derivation of Hammerstad and Jansen
280(4)
10.3.3 Characteristic Impedances in Terms of the Coupling Factor
284(3)
10.3.4 Connecting Microstrip Lines
287(3)
10.4 Semi-empirical Analysis Formulas as a Design Aid
290(11)
10.4.1 Dispersion
294(1)
10.4.2 More Accurate Design Expressions, Including Dispersion
295(6)
10.5 An Approximate Synthesis Technique
301(3)
10.6 Summary
304(1)
References
304(2)
11 Applications of Parallel-coupled Microstrip Lines 306(33)
11.1 Introduction
306(1)
11.2 Directional Couplers
306(2)
11.2.1 Overall Parameters for Couplers
308(1)
11.3 Design Example: Design of a 10 dB Microstrip Coupler
308(2)
11.3.1 Use of Bryant and Weiss' Curves
309(1)
11.3.2 Synthesis Using Akhtarzad's Technique
309(1)
11.3.3 Comparison of Methods
310(1)
11.4 Frequency- and Length-Dependent Characteristics of Directional Couplers
310(5)
11.4.1 Optimum Coupled-region Length
310(3)
11.4.2 Overall Effects and Getsinger's Model
313(1)
11.4.3 Complete Coupling Section Response
314(1)
11.4.4 Coupler Directivity
314(1)
11.5 Special Coupler Designs with Improved Performance
315(14)
11.5.1 The Lange Coupler
315(4)
11.5.2 The Unfolded Lange Coupler
319(1)
11.5.3 Shielded Parallel-coupled Microstrips
320(1)
11.5.4 The Use of a Dielectric Overlay
321(1)
11.5.5 The Incorporation of Lumped Capacitors
321(3)
11.5.6 The Effect of a Dielectrically Anisotropic Substrate
324(1)
11.5.7 Microstrip Multiplexers
324(1)
11.5.8 Multisection Couplers
325(1)
11.5.9 Re-entrant Mode Couplers
326(1)
11.5.10 Patch Couplers
327(1)
11.5.11 Planar Combline Directional Couplers
328(1)
11.6 Thickness Effects, Power Losses, and Fabrication Tolerances
329(2)
11.6.1 Thickness Effects
329(1)
11.6.2 Power Losses
329(1)
11.6.3 Effects of Fabrication Tolerances
330(1)
11.7 Choice of Structure and Design Recommendations
331(5)
11.7.1 Design Procedure for Coupled Microstrips, where the Mid-band Coupling Factor C < — 6 dB
331(1)
11.7.2 Relatively Large Coupling Factors (typically C is between —6 and —3 dB)
332(1)
11.7.3 Length of the Coupled Region
333(1)
11.7.4 Frequency Response
334(1)
11.7.5 Coupled Structures with Improved Performance
334(1)
11.7.6 Effects of Conductor Thickness, Power Losses, and Production Tolerances
335(1)
11.7.7 Crosstalk Between Microstrip Lines used in Digital Systems
335(1)
11.7.8 Post-manufacture Circuit Adjustment
335(1)
11.8 Summary
336(1)
References
337(2)
12 Microstrip Passive Elements 339(30)
12.1 Introduction
339(1)
12.2 Lumped Elements
339(4)
12.2.1 Capacitors
339(1)
12.2.2 Inductors
340(2)
12.2.3 Transformers
342(1)
12.2.4 Resistors
342(1)
12.3 Terminations and Attenuators
343(2)
12.3.1 Matched Terminations and Attenuators
343(2)
12.3.2 Passive Intermodulation Distortion
345(1)
12.4 Microstrip Stubs
345(3)
12.4.1 Open Microstrip Stub
345(1)
12.4.2 Short-circuited Microstrip Stub
346(1)
12.4.3 Microstrip Radial Stubs
347(1)
12.5 Hybrids and Couplers
348(7)
12.5.1 Quadrature Hybrid
349(1)
12.5.2 180° Hybrid
349(1)
12.5.3 Branch-line Coupler
349(4)
12.5.4 Rat-race Coupler
353(2)
12.6 Power Combiners and Dividers
355(2)
12.6.1 Wilkinson Combiner
355(1)
12.6.2 Chireix Combiner
356(1)
12.6.3 Branch-type Couplers and Power Dividers
356(1)
12.7 Baluns
357(2)
12.7.1 Marchand Balun
357(2)
12.8 Integrated Components
359(6)
12.8.1 On-chip Resistors
360(1)
12.8.2 On-chip Capacitors
360(2)
12.8.3 Planar Inductors
362(3)
12.9 Summary
365(1)
References
365(4)
13 Stripline Design 369(15)
13.1 Introduction
369(1)
13.2 Symmetrical Stripline
370(3)
13.2.1 Characteristic Impedance
370(2)
13.2.2 Zero Thickness
372(1)
13.2.3 Attenuation
372(1)
13.3 Asymmetrical Stripline
373(2)
13.4 Suspended Stripline
375(1)
13.5 Coupled Stripline
375(4)
13.5.1 Edge-coupled Stripline
375(3)
13.5.2 Broadside-coupled Stripline
378(1)
13.6 Double-sided Stripline
379(1)
13.7 Discontinuities
380(1)
13.7.1 Stripline Open Circuit
380(1)
13.7.2 Bends
381(1)
13.7.3 Was
381(1)
13.7.4 Junctions
381(1)
13.8 Design Recommendations
381(1)
13.9 Summary
382(1)
References
382(2)
14 CPW Design Fundamentals 384(59)
14.1 Introduction to Properties of Coplanar Waveguide
384(5)
14.2 Modeling CPWs
389(2)
14.2.1 Effective Permittivity
390(1)
14.2.2 Characteristic Impedance
390(1)
14.3 Formulas for Accurate Calculations
391(2)
14.3.1 Analysis and Synthesis Approaches
391(2)
14.4 Loss Mechanisms
393(4)
14.4.1 Dielectric Loss
393(1)
14.4.2 Conductor Loss
394(2)
14.4.3 Radiation Loss
396(1)
14.4.4 CPW with Intervening SiO2 Layer
396(1)
14.5 Dispersion
397(11)
14.5.1 Fundamental and Theoretical Considerations
397(2)
14.5.2 Results from Test Runs using Electromagnetic Simulation
399(7)
14.5.3 Experimental Results
406(1)
14.5.4 Leakage Suppression and 50 GHz Interconnect
407(1)
14.6 Discontinuities
408(13)
14.6.1 Step Changes in Width and Separation
409(3)
14.6.2 Open Circuit
412(1)
14.6.3 Symmetric Series Gap
413(1)
14.6.4 Coplanar Short Circuit
414(1)
14.6.5 Right-angle Bends
415(3)
14.6.6 T Junctions
418(1)
14.6.7 Air Bridges
418(3)
14.6.8 Cross-Over Junctions
421(1)
14.7 Circuit Elements
421(9)
14.7.1 Interdigital Capacitors and Stubs
421(2)
14.7.2 Filters
423(3)
14.7.3 Couplers and Baluns
426(1)
14.7.4 Power Dividers
427(1)
14.7.5 CPW and Surface Mount Components
428(2)
14.8 Variants on the Basic CPW Structure
430(9)
14.8.1 CPW with Top and Bottom Metal Shields
430(1)
14.8.2 Multilayer CPW
431(1)
14.8.3 Trenched CPW on a Silicon MMIC
432(1)
14.8.4 Differential Line and Coplanar Strip
433(6)
14.9 Summary
439(1)
References
439(4)
15 Slotline 443(22)
15.1 Introduction
443(1)
15.2 Basic Concept and Structure
444(1)
15.3 Operating Principles and Modes
444(3)
15.4 Propagation and Dispersion Characteristics
447(4)
15.5 Evaluation of Guide Wavelength and Characteristic Impedance
451(2)
15.6 Losses
453(2)
15.7 End-effects: Open Circuits and Short Circuits
455(8)
15.7.1 Jansen's Results
455(4)
15.7.2 Chramiec's Measurements
459(4)
15.7.3 Some Other Results
463(1)
15.8 Summary
463(1)
References
463(2)
16 Slotline Applications 465(23)
16.1 Introduction
465(1)
16.2 Comparators and Couplers
465(7)
16.2.1 Comparators
465(4)
16.2.2 Fundamentals of Parallel-coupled Slotlines
469(1)
16.2.3 A Three-layer Wideband Coupler
470(2)
16.3 Filter Applications
472(2)
16.4 Magic T
474(3)
16.5 The Marchand Balun
477(3)
16.6 Phase Shifters
480(1)
16.7 Isolators and Circulators
481(5)
16.8 A Double-sided, Balanced Microwave Circuit
486(1)
16.9 Summary
486(1)
References
486(2)
17 Transitions 488(26)
17.1 Introduction
488(1)
17.2 Coaxial-to-microstrip Transitions
488(2)
17.3 Waveguide-to-microstrip Transitions
490(5)
17.3.1 Ridgeline Transformer Insert
490(2)
17.3.2 Mode Changer and Balun
492(1)
17.3.3 A Waveguide-to-microstrip Power Splitter
493(1)
17.3.4 Slot-coupled Antenna Waveguide-to-microstrip Transition
494(1)
17.4 Transitions between CPW and other Mediums
495(3)
17.5 Slotline Transitions
498(12)
17.5.1 Microstrip-slotline Transition, Antar
498(1)
17.5.2 Microstrip-slotline Transition, Chramiec
499(1)
17.5.3 Slotline-microstrip Transition, Podcameui and Coimbra
500(1)
17.5.4 Microstrip-slot Dispersion, Itoh
500(1)
17.5.5 Microstrip-slotline Transitions, Yang
500(1)
17.5.6 Microstrip-slotline Transitions, Schuppert
501(4)
17.5.7 Microstrip-slotline-microstrip Transitions
505(2)
17.5.8 Microstrip-slotline Transition with Open and Short-circuited Lines
507(2)
17.5.9 Coaxial-Slotline and Microstrip-Slotline Transition, Knorr
509(1)
17.5.10 Slotline-Stripline Transition. Aikawa et al.
510(1)
17.6 Other Microstrip Transitions
510(1)
17.7 Summary
511(1)
References
511(3)
18 Measurements of Planar Transmission Line Structures 514(27)
18.1 Introduction
514(1)
18.2 Instrumentation Systems for Microstrip Measurements
514(1)
18.3 Measurement of Scattering Parameters
515(4)
18.3.1 Some S Parameter Relationships in Interpreting Interconnect Measurements
517(2)
18.3.2 Fitting an Equivalent Circuit
519(1)
18.3.3 Standing-wave Indicators in Microstrip
519(1)
18.4 Measurement of Substrate Properties
519(4)
18.4.1 Determining Effective Permittivity from Transmission Line Measurements
520(2)
18.4.2 Resonance-based Permittivity Determination
522(1)
18.5 Microstrip Resonator Methods
523(10)
18.5.1 The Ring Resonator
524(1)
18.5.2 The Side-coupled Open-circuit-terminated Straight Resonator
525(1)
18.5.3 Series-gap Coupling of Microstrips
526(2)
18.5.4 Series-gap-coupled Straight Resonator Pairs
528(2)
18.5.5 The Resonant Technique due to Richings and Easter
530(1)
18.5.6 The Symmetrical Straight Resonator
531(1)
18.5.7 Resonance Methods for the Determination of Discontinuities other than Open Circuits
532(1)
18.6 Q Factor Measurements
533(2)
18.7 Measurements of Parallel-coupled Microstrips
535(2)
18.8 Time-domain Reflectometry Techniques
537(2)
18.9 Summary
539(1)
References
539(2)
19 Filters Using Planar Transmission Lines 541(35)
19.1 Introduction
541(1)
19.2 Filter Prototypes
541(13)
19.2.1 Maximally Flat (Butterworth) Lowpass Filter Prototype
542(1)
19.2.2 Chebyshev Lowpass Prototype
543(1)
19.2.3 Impedance and Admittance Inverters
544(4)
19.2.4 Using Inverters to Transform Between Series and Shunt Elements
548(1)
19.2.5 Ladder Prototype with Impedance Inverters
549(1)
19.2.6 Lumped-element Model of an Inverter
550(1)
19.2.7 Moderate Bandwidth Transmission Line Stub Model of an Inverter
550(2)
19.2.8 Unit Element
552(1)
19.2.9 Filter Transformations
553(1)
19.2.10 Impedance Transformation
553(1)
19.2.11 Frequency Transformation
554(1)
19.2.12 Filter Type Transformation
554(1)
19.3 Microstrip Filters
554(5)
19.3.1 Lowpass Filters Formed with Cascaded Microstrips
554(4)
19.3.2 Summary
558(1)
19.4 Microstrip Bandpass Filters
559(2)
19.4.1 Bandpass Filter Prototypes
559(1)
19.4.2 End-coupled Bandpass Filters
559(2)
19.5 Parallel-coupled Line Bandpass Filters
561(11)
19.5.1 Interdigitated Filters
562(1)
19.5.2 Edge-coupled PCL Bandpass Filters
562(4)
19.5.3 Combline Filters
566(1)
19.5.4 Hairpin Filters
566(1)
19.5.5 Miniature Coupled Line Filters with Extended Stopband
567(1)
19.5.6 Improvements to the Basic PCL Filter Response
567(1)
19.5.7 Case Study: PCL Edge-coupled Bandpass Filter
568(4)
19.6 Filter Design Accounting for Losses
572(1)
19.7 Dielectric Resonators and Filters Using Them
572(1)
19.8 Spurline Bandstop Filters
573(2)
19.9 Summary
575(1)
References
575(1)
20 Magnetic Materials and Planar Transmission Lines 576(34)
20.1 Introduction
576(1)
20.2 Microwave Magnetic Materials
577(10)
20.2.1 Alignment of Elementary Magnetic Moments
577(1)
20.2.2 The Physics of Magnetic Materials
578(4)
20.2.3 The Physics of Magnetized Ferromagnetic Materials
582(2)
20.2.4 Phasor Relationships of the B and H Fields
584(1)
20.2.5 Other Directions of Magnetization
585(1)
20.2.6 Summary
586(1)
20.3 Effective Permeability of Magnetic Materials
587(2)
20.3.1 Effective Permeability of Uhmagnetized Materials
587(1)
20.3.2 Effective Permeability of Magnetized Materials
587(1)
20.3.3 Summary
588(1)
20.4 Microstrip on a Ferrite Substrate
589(3)
20.4.1 Effective Substrate Permeability
589(1)
20.4.2 Magnetic Filling Factor
590(1)
20.4.3 Effective Microstrip Permeability
590(2)
20.5 Isolators and Circulators
592(3)
20.5.1 Circulators
592(2)
20.5.2 Isolators
594(1)
20.6 Transmission Lines Using Metaconductors
595(11)
20.6.1 A Study of a Metaconductor-based CPW Line
597(9)
20.7 Frequency Selective Limiter
606(1)
20.8 Summary
607(1)
References
607(3)
21 Interconnects for Digital Systems 610(19)
21.1 Introduction
610(1)
21.2 Overview of On-chip Interconnects
610(3)
21.2.1 Types of On-chip Interconnects
611(2)
21.3 RC Modeling of On-chip Interconnects
613(6)
21.3.1 Delay Modeling
614(3)
21.3.2 RC Modeling
617(2)
21.4 Modeling Inductance
619(3)
21.4.1 When are Inductance Effects Important?
619(3)
21.4.2 Inductance Extraction
622(1)
21.5 Clock Distribution
622(3)
21.6 Resonant Clock Distribution
625(1)
21.7 Summary
626(1)
References
627(2)
A Physical and Mathematical Properties 629(6)
A.1 SI Units
629(1)
A.2 SI Prefixes
629(2)
A.3 Physical and Mathematical Constants
631(1)
A.4 Basis of Electromagnetic SI Units
631(1)
A.5 Relationship of SI Units to CGS Units
632(3)
B Material Properties 635(8)
References
642(1)
C RF and Microwave Substrates 643(4)
C.1 Hard substrates
643(1)
C.2 Soft Substrates
644(3)
Index 647
Mr Terence Edwards,  Engalco Research, UK Terry Edwards gained a Diploma in Technology (Eng.) at what is now London South Bank University. During his early career he was a senior development engineer for Ultra Electronics. This carried the responsibility for the microminiaturisation of electronics on the control system for the Concorde jet engine. Technology has been a constant theme for his career and he moved into lecturing basic electrical engineering and electronics at High Wycombe College of Technology & Arts. He took on a landmark role of senior lecturer at La Trobe University in Melbourne, Australia that involved him launching and teaching solid state microwave technology. Until recently he was Executive Director of Engalco Research, a strategic commercial and military industrial consultancy and research organization. Engalco is well known for providing industry and market data reports in the field of microwave products for defense and SATCOM applications. From January 2014 Terry has been leading a new management and technology venture names Edwards Research Associates.

Professor Michael B Steer, North Carolina State University, USA Michael Steer is the Lampe Distinguished Professor of Electrical and Computer Engineering at North Carolina State University (NC State). He is a Fellow of the IEEE (the Institute of Electrical and Electronics Engineers). He was Secretary of the IEEE Microwave Theory and Techniques Society (MTT-S) in 1997 and was a member of the MTT-S Administrative Committee from 1998 to 2001, and from 2003 to 2006. He received a Service Recognition Awards from the Society in 1998 and 2001.