Preface |
|
xxiii | |
Acknowledgements |
|
xxv | |
1 Introduction to Design Using Microstrip and Planar Lines |
|
1 | (18) |
|
|
1 | (1) |
|
1.2 Origins of Microstrip |
|
|
2 | (2) |
|
1.3 RF and Microwave Modules |
|
|
4 | (9) |
|
1.3.1 Reference LO Section |
|
|
4 | (3) |
|
1.3.2 Frequency Conversion Section |
|
|
7 | (4) |
|
1.3.3 Intermediate Frequency Section |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
13 | (1) |
|
1.4 Interconnections on RF and Microwave Integrated Circuits |
|
|
13 | (2) |
|
1.5 High-speed Digital Interconnections |
|
|
15 | (3) |
|
|
18 | (1) |
|
|
18 | (1) |
2 Fundamentals of Signal Transmission on Interconnects |
|
19 | (32) |
|
|
19 | (1) |
|
2.2 Transmission Lines and Interconnects |
|
|
19 | (1) |
|
2.3 Interconnects as Part of a Packaging Hierarchy |
|
|
20 | (1) |
|
2.4 The Physical Basis of Interconnects |
|
|
21 | (2) |
|
2.4.1 What an Interconnect is and How Information is Transmitted |
|
|
22 | (1) |
|
2.5 The Physics, a Guided Wave |
|
|
23 | (9) |
|
2.5.1 Transmission of a Pulse |
|
|
23 | (3) |
|
2.5.2 Transverse Electromagnetic Lines |
|
|
26 | (1) |
|
|
27 | (1) |
|
2.5.4 The Effect of Dielectric |
|
|
28 | (1) |
|
2.5.5 Dielectric Loss Tangent, tan δ |
|
|
28 | (1) |
|
2.5.6 Magnetic Material Effect |
|
|
29 | (1) |
|
2.5.7 Frequency-dependent Charge Distribution |
|
|
30 | (1) |
|
|
31 | (1) |
|
2.6 When an Interconnect Should be Treated as a Transmission Line |
|
|
32 | (2) |
|
2.7 The Concept of RF Transmission Lines |
|
|
34 | (1) |
|
2.8 Primary Transmission Line Constants |
|
|
34 | (1) |
|
2.9 Secondary Constants for Transmission Lines |
|
|
35 | (2) |
|
2.10 Transmission Line Impedances |
|
|
37 | (1) |
|
|
38 | (3) |
|
2.11.1 Reflection and Voltage Standing-wave Ratio |
|
|
38 | (1) |
|
2.11.2 Forward- and Backward-traveling Pulses |
|
|
39 | (1) |
|
2.11.3 Effect on Signal Integrity |
|
|
40 | (1) |
|
|
41 | (3) |
|
|
44 | (3) |
|
2.13.1 Common Impedance Coupling |
|
|
46 | (1) |
|
2.14 Modeling of Interconnects |
|
|
47 | (2) |
|
|
49 | (1) |
|
|
50 | (1) |
3 Microwave Network Analysis |
|
51 | (25) |
|
|
51 | (1) |
|
|
51 | (4) |
|
3.2.1 Reciprocity, Symmetry, Passivity, and Linearity |
|
|
52 | (1) |
|
3.2.2 Two-ports and Voltage and Current |
|
|
52 | (1) |
|
3.2.3 ABCD Matrix Description of Two-port Networks |
|
|
53 | (2) |
|
3.3 Scattering Parameter Theory |
|
|
55 | (15) |
|
|
55 | (1) |
|
|
56 | (1) |
|
3.3.3 Normalized Scattering Parameters |
|
|
57 | (1) |
|
3.3.4 Scattering Parameters for a Two-port Network |
|
|
58 | (2) |
|
3.3.5 Definitions of Two-port S Parameters |
|
|
60 | (1) |
|
3.3.6 Evaluation of Scattering Parameters |
|
|
61 | (1) |
|
3.3.7 Multiport S Parameters |
|
|
62 | (1) |
|
3.3.8 Three-port S Parameters |
|
|
63 | (2) |
|
3.3.9 Cascaded Two-port Networks |
|
|
65 | (2) |
|
3.3.10 Conversion between S Parameters and ABCD Parameters |
|
|
67 | (1) |
|
|
68 | (1) |
|
|
69 | (1) |
|
3.4 Signal-flow Graph Techniques and S Parameters |
|
|
70 | (4) |
|
|
71 | (1) |
|
3.4.2 Simplification and Reduction of SFGs |
|
|
72 | (2) |
|
|
74 | (1) |
|
|
74 | (2) |
4 Transmission Line Theory |
|
76 | (13) |
|
|
76 | (1) |
|
4.2 Transmission Line Theory |
|
|
76 | (5) |
|
4.2.1 Half-, Quarter- and Eighth-wavelength Lines |
|
|
77 | (1) |
|
4.2.2 Simple (Narrowband) Matching |
|
|
78 | (1) |
|
4.2.3 Equivalent Two-port Networks |
|
|
79 | (2) |
|
4.3 Chain (ABCD) Parameters fora Uniform Length of Loss-free Transmission Line |
|
|
81 | (1) |
|
4.4 Change in Reference Plane |
|
|
82 | (1) |
|
4.5 Working With a Complex Characteristic Impedance |
|
|
83 | (4) |
|
|
84 | (1) |
|
|
85 | (1) |
|
|
86 | (1) |
|
|
87 | (1) |
|
|
87 | (1) |
|
|
88 | (1) |
5 Planar Interconnect Technologies |
|
89 | (31) |
|
|
89 | (1) |
|
5.2 Microwave Frequencies and Applications |
|
|
89 | (2) |
|
5.3 Transmission Line Structures |
|
|
91 | (7) |
|
|
92 | (1) |
|
|
93 | (1) |
|
5.3.3 Finline (E-plane Circuits) |
|
|
94 | (1) |
|
5.3.4 Inverted Microstrip |
|
|
94 | (1) |
|
|
95 | (1) |
|
5.3.6 Trapped Inverted Microstrip |
|
|
95 | (1) |
|
|
95 | (1) |
|
5.3.8 CPS and Differential Line |
|
|
96 | (1) |
|
|
96 | (1) |
|
5.3.10 Summary of Interconnect Properties |
|
|
97 | (1) |
|
5.4 Substrates for Planar Transmission Lines |
|
|
98 | (4) |
|
|
98 | (2) |
|
|
100 | (1) |
|
|
100 | (1) |
|
5.4.4 Sapphire — the 'Benchmark' Substrate Material |
|
|
101 | (1) |
|
|
102 | (2) |
|
5.5.1 Plate-through Technique |
|
|
102 | (1) |
|
5.5.2 Etch-back Technique |
|
|
103 | (1) |
|
|
103 | (1) |
|
5.5.4 Thin Resistive Films |
|
|
103 | (1) |
|
|
104 | (1) |
|
5.6.1 Pastes, Printing, and Processing for Thick-film Modules |
|
|
104 | (1) |
|
5.7 Monolithic Technology |
|
|
105 | (3) |
|
|
105 | (1) |
|
5.7.2 Multilayer Interconnect |
|
|
106 | (1) |
|
|
107 | (1) |
|
|
108 | (1) |
|
5.7.5 Hybrid and Monolithic Approaches Compared |
|
|
108 | (1) |
|
5.8 Printed Circuit Boards |
|
|
108 | (3) |
|
|
109 | (1) |
|
|
110 | (1) |
|
|
111 | (5) |
|
|
112 | (1) |
|
|
112 | (1) |
|
|
112 | (1) |
|
5.9.4 Characterization of Interconnects on a Multichip Module: A Case Study |
|
|
113 | (3) |
|
|
116 | (1) |
|
|
116 | (1) |
|
|
117 | (3) |
6 Microstrip Design at Low Frequencies |
|
120 | (37) |
|
6.1 The Microstrip Design Problem |
|
|
120 | (2) |
|
6.1.1 A Transistor Amplifier Input Network |
|
|
120 | (1) |
|
6.1.2 The Geometry of Microstrip |
|
|
121 | (1) |
|
6.2 The Quasi-TEM Mode of Propagation |
|
|
122 | (2) |
|
6.3 Static-TEM Parameters |
|
|
124 | (3) |
|
6.3.1 The Characteristic Impedance Z0 |
|
|
124 | (1) |
|
6.3.2 The Effective Microstrip Permittivity &epsiloneff |
|
|
125 | (1) |
|
6.3.3 Synthesis: The Width-to-height Ratio w/h |
|
|
126 | (1) |
|
6.3.4 Wavelength λ, and Physical Length l |
|
|
127 | (1) |
|
6.4 Effective Permittivity and Characteristic Impedance of Microstrip |
|
|
127 | (5) |
|
6.4.1 Formulas for Effective Permittivity and Characteristic Impedance |
|
|
128 | (2) |
|
6.4.2 A Convenient Approximation of Effective Permittivity |
|
|
130 | (2) |
|
|
132 | (2) |
|
6.6 Approximate Graphically Based Synthesis |
|
|
134 | (3) |
|
6.7 Formulas for Accurate Static-TEM Design Calculations |
|
|
137 | (2) |
|
6.7.1 Synthesis Formulas (Z0 and εr Given) |
|
|
137 | (1) |
|
6.7.2 Analysis Formulas (w/h and εr Given) |
|
|
138 | (1) |
|
6.7.3 Overall Accuracies to be Expected From the Previous Expressions |
|
|
139 | (1) |
|
6.8 Electromagnetic Analysis-based Techniques |
|
|
139 | (1) |
|
6.9 A Worked Example of Static-TEM Synthesis |
|
|
140 | (1) |
|
6.9.1 Graphical Determination |
|
|
140 | (1) |
|
6.9.2 Accurately Calculated Results |
|
|
141 | (1) |
|
6.9.3 Final Dimensions of the Microstrip Element |
|
|
141 | (1) |
|
6.10 Microstrip on a Dielectrically Anisotropic Substrate |
|
|
141 | (5) |
|
6.11 Microstrip and Magnetic Materials |
|
|
146 | (1) |
|
6.12 Effects of Finite Strip Thickness, Metallic Enclosure, and Manufacturing Tolerances |
|
|
147 | (4) |
|
6.12.1 Effects of Finite Strip Thickness |
|
|
147 | (1) |
|
6.12.2 Alternative Treatment of the Effect of Strip Thickness |
|
|
148 | (1) |
|
6.12.3 Effects of a Metallic Enclosure |
|
|
149 | (1) |
|
6.12.4 Effects Due to Manufacturing Tolerances |
|
|
150 | (1) |
|
6.13 Pulse Propagation along Microstrip Lines |
|
|
151 | (1) |
|
6.14 Recommendations Relating to the Static-TEM Approaches |
|
|
152 | (2) |
|
6.14.1 The Principal Static-TEM Synthesis Formulas |
|
|
152 | (1) |
|
6.14.2 Microstrip on a Sapphire (Anisotropic) Substrate |
|
|
153 | (1) |
|
6.14.3 Design Strategies Accommodating Manufacturing Tolerances |
|
|
154 | (1) |
|
|
154 | (1) |
|
|
155 | (2) |
7 Microstrip at High Frequencies |
|
157 | (43) |
|
|
157 | (1) |
|
7.2 Frequency-dependent Effects |
|
|
157 | (12) |
|
7.2.1 Frequency-dependent Charge Distribution |
|
|
158 | (1) |
|
7.2.2 Dielectric Dispersion and Current Bunching |
|
|
158 | (5) |
|
|
163 | (4) |
|
7.2.4 Surface and Edge Effects |
|
|
167 | (2) |
|
7.3 Approximate Calculations Accounting for Dispersion |
|
|
169 | (4) |
|
7.4 Accurate Design Formulas |
|
|
173 | (9) |
|
7.4.1 Edwards and Owens' Expressions |
|
|
173 | (2) |
|
7.4.2 Expressions Suitable for Millimeter-wave Design |
|
|
175 | (4) |
|
7.4.3 Dispersion Curves Derived from Simulations |
|
|
179 | (1) |
|
7.4.4 Designs Requiring Dispersion Calculations, Worked Example |
|
|
180 | (2) |
|
7.5 Effects due to Ferrite and to Dielectrically Anisotropic Substrates |
|
|
182 | (1) |
|
7.5.1 Effects of Ferrite Substrates |
|
|
182 | (1) |
|
7.5.2 Effects of a Dielectrically Anisotropic Substrate |
|
|
182 | (1) |
|
|
183 | (3) |
|
7.6.1 One Example of a 'Classic' Frequency-dependent Computer-based Field Solution |
|
|
183 | (1) |
|
|
184 | (1) |
|
7.6.3 Time-domain Approaches |
|
|
184 | (2) |
|
7.7 Frequency Dependence of Microstrip Characteristic Impedance |
|
|
186 | (4) |
|
7.7.1 Different Definitions and Trends with Increasing Frequency |
|
|
186 | (1) |
|
7.7.2 Use of the Planar Waveguide Model (Figure 7.24) |
|
|
187 | (1) |
|
7.7.3 A First-order Expression for Zo(f) |
|
|
188 | (1) |
|
7.7.4 A Second-order Expression for Zo(f) |
|
|
188 | (1) |
|
7.7.5 A Further Alternative Expression |
|
|
189 | (1) |
|
7.7.6 A Design Algorithm for Microstrip Width |
|
|
189 | (1) |
|
7.8 Multimoding and Limitations on Operating Frequency |
|
|
190 | (4) |
|
7.8.1 The Lowest-order Transverse Microstrip Resonance |
|
|
190 | (1) |
|
7.8.2 The TM Mode Limitation |
|
|
191 | (3) |
|
7.9 Design Recommendations |
|
|
194 | (2) |
|
|
196 | (1) |
|
|
196 | (4) |
8 Loss and Power-dependent Effects in Microstrip |
|
200 | (27) |
|
|
200 | (1) |
|
8.2 Q Factor as a Measure of Loss |
|
|
200 | (8) |
|
|
200 | (2) |
|
|
202 | (1) |
|
8.2.3 External Q Factor of an Open-circuited Microstrip Resonator |
|
|
202 | (6) |
|
8.3 Power Losses and Parasitic Effects |
|
|
208 | (8) |
|
|
209 | (1) |
|
|
210 | (1) |
|
|
211 | (1) |
|
8.3.4 Q Factor and Attenuation Coefficient |
|
|
212 | (1) |
|
8.3.5 Surface-wave Propagation |
|
|
213 | (1) |
|
|
214 | (1) |
|
8.3.7 Radiation and Surface-wave Losses from Various Discontinuities |
|
|
214 | (1) |
|
8.3.8 Losses in Microstrip on Semi-insulating GaAs |
|
|
214 | (2) |
|
8.4 Superconducting Microstrip Lines |
|
|
216 | (3) |
|
8.5 Power-handling Capabilities |
|
|
219 | (2) |
|
8.5.1 Maximum Average Power Pma Under CW Conditions |
|
|
219 | (1) |
|
8.5.2 Peak (Pulse) Power-handling Capability |
|
|
220 | (1) |
|
8.6 Passive Intermodulation Distortion |
|
|
221 | (3) |
|
|
221 | (1) |
|
8.6.2 PIM on Microstrip Transmission Lines |
|
|
222 | (1) |
|
|
223 | (1) |
|
|
224 | (1) |
|
|
224 | (3) |
9 Discontinuities in Microstrip |
|
227 | (41) |
|
|
227 | (1) |
|
9.2 The Main Discontinuities |
|
|
228 | (8) |
|
|
228 | (4) |
|
|
232 | (2) |
|
9.2.3 Microstrip Short Circuits |
|
|
234 | (2) |
|
9.2.4 Further Discontinuities |
|
|
236 | (1) |
|
|
236 | (5) |
|
9.3.1 The Right-angled Bend or "Corner" |
|
|
236 | (2) |
|
9.3.2 Mitered or "Matched" Microstrip Bends, Compensation Techniques |
|
|
238 | (3) |
|
9.4 Step Changes in Width (Impedance Step) |
|
|
241 | (2) |
|
9.4.1 The Symmetrical Microstrip Step |
|
|
241 | (2) |
|
9.4.2 The Asymmetrical Step in Microstrip |
|
|
243 | (1) |
|
9.5 The Narrow Transverse Slit |
|
|
243 | (2) |
|
|
245 | (16) |
|
9.6.1 The Microstrip T Junction |
|
|
245 | (3) |
|
9.6.2 Compensated T Junctions |
|
|
248 | (1) |
|
|
248 | (3) |
|
9.6.4 Open Circuits and Series Gaps |
|
|
251 | (5) |
|
9.6.5 Other Discontinuities |
|
|
256 | (1) |
|
9.6.6 Cross and T Junctions |
|
|
257 | (2) |
|
|
259 | (1) |
|
9.6.8 Frequency Dependence of via Parameters |
|
|
260 | (1) |
|
9.7 Recommendations for the Calculation of Discontinuities |
|
|
261 | (5) |
|
9.7.1 Foreshortened Open Circuits |
|
|
261 | (2) |
|
|
263 | (1) |
|
|
263 | (1) |
|
9.7.4 Right-angled and Mitered Bends |
|
|
264 | (1) |
|
|
264 | (1) |
|
|
264 | (1) |
|
9.7.7 The Asymmetric Cross Junction |
|
|
265 | (1) |
|
|
266 | (1) |
|
|
266 | (2) |
10 Parallel-coupled Microstrip Lines |
|
268 | (38) |
|
|
268 | (1) |
|
10.2 Coupled Transmission Line Theory |
|
|
269 | (9) |
|
10.2.1 Parallel-coupled Transmission Lines |
|
|
269 | (1) |
|
10.2.2 Even and Odd Modes |
|
|
269 | (2) |
|
10.2.3 Transmission Line Equations |
|
|
271 | (6) |
|
10.2.4 Capacitance Matrix Extraction |
|
|
277 | (1) |
|
10.3 Formulas for Characteristic Impedance of Coupled Lines |
|
|
278 | (12) |
|
10.3.1 Derivation of Bryant and Weiss |
|
|
279 | (1) |
|
10.3.2 Derivation of Hammerstad and Jansen |
|
|
280 | (4) |
|
10.3.3 Characteristic Impedances in Terms of the Coupling Factor |
|
|
284 | (3) |
|
10.3.4 Connecting Microstrip Lines |
|
|
287 | (3) |
|
10.4 Semi-empirical Analysis Formulas as a Design Aid |
|
|
290 | (11) |
|
|
294 | (1) |
|
10.4.2 More Accurate Design Expressions, Including Dispersion |
|
|
295 | (6) |
|
10.5 An Approximate Synthesis Technique |
|
|
301 | (3) |
|
|
304 | (1) |
|
|
304 | (2) |
11 Applications of Parallel-coupled Microstrip Lines |
|
306 | (33) |
|
|
306 | (1) |
|
11.2 Directional Couplers |
|
|
306 | (2) |
|
11.2.1 Overall Parameters for Couplers |
|
|
308 | (1) |
|
11.3 Design Example: Design of a 10 dB Microstrip Coupler |
|
|
308 | (2) |
|
11.3.1 Use of Bryant and Weiss' Curves |
|
|
309 | (1) |
|
11.3.2 Synthesis Using Akhtarzad's Technique |
|
|
309 | (1) |
|
11.3.3 Comparison of Methods |
|
|
310 | (1) |
|
11.4 Frequency- and Length-Dependent Characteristics of Directional Couplers |
|
|
310 | (5) |
|
11.4.1 Optimum Coupled-region Length |
|
|
310 | (3) |
|
11.4.2 Overall Effects and Getsinger's Model |
|
|
313 | (1) |
|
11.4.3 Complete Coupling Section Response |
|
|
314 | (1) |
|
11.4.4 Coupler Directivity |
|
|
314 | (1) |
|
11.5 Special Coupler Designs with Improved Performance |
|
|
315 | (14) |
|
|
315 | (4) |
|
11.5.2 The Unfolded Lange Coupler |
|
|
319 | (1) |
|
11.5.3 Shielded Parallel-coupled Microstrips |
|
|
320 | (1) |
|
11.5.4 The Use of a Dielectric Overlay |
|
|
321 | (1) |
|
11.5.5 The Incorporation of Lumped Capacitors |
|
|
321 | (3) |
|
11.5.6 The Effect of a Dielectrically Anisotropic Substrate |
|
|
324 | (1) |
|
11.5.7 Microstrip Multiplexers |
|
|
324 | (1) |
|
11.5.8 Multisection Couplers |
|
|
325 | (1) |
|
11.5.9 Re-entrant Mode Couplers |
|
|
326 | (1) |
|
|
327 | (1) |
|
11.5.11 Planar Combline Directional Couplers |
|
|
328 | (1) |
|
11.6 Thickness Effects, Power Losses, and Fabrication Tolerances |
|
|
329 | (2) |
|
|
329 | (1) |
|
|
329 | (1) |
|
11.6.3 Effects of Fabrication Tolerances |
|
|
330 | (1) |
|
11.7 Choice of Structure and Design Recommendations |
|
|
331 | (5) |
|
11.7.1 Design Procedure for Coupled Microstrips, where the Mid-band Coupling Factor C < — 6 dB |
|
|
331 | (1) |
|
11.7.2 Relatively Large Coupling Factors (typically C is between —6 and —3 dB) |
|
|
332 | (1) |
|
11.7.3 Length of the Coupled Region |
|
|
333 | (1) |
|
11.7.4 Frequency Response |
|
|
334 | (1) |
|
11.7.5 Coupled Structures with Improved Performance |
|
|
334 | (1) |
|
11.7.6 Effects of Conductor Thickness, Power Losses, and Production Tolerances |
|
|
335 | (1) |
|
11.7.7 Crosstalk Between Microstrip Lines used in Digital Systems |
|
|
335 | (1) |
|
11.7.8 Post-manufacture Circuit Adjustment |
|
|
335 | (1) |
|
|
336 | (1) |
|
|
337 | (2) |
12 Microstrip Passive Elements |
|
339 | (30) |
|
|
339 | (1) |
|
|
339 | (4) |
|
|
339 | (1) |
|
|
340 | (2) |
|
|
342 | (1) |
|
|
342 | (1) |
|
12.3 Terminations and Attenuators |
|
|
343 | (2) |
|
12.3.1 Matched Terminations and Attenuators |
|
|
343 | (2) |
|
12.3.2 Passive Intermodulation Distortion |
|
|
345 | (1) |
|
|
345 | (3) |
|
12.4.1 Open Microstrip Stub |
|
|
345 | (1) |
|
12.4.2 Short-circuited Microstrip Stub |
|
|
346 | (1) |
|
12.4.3 Microstrip Radial Stubs |
|
|
347 | (1) |
|
12.5 Hybrids and Couplers |
|
|
348 | (7) |
|
|
349 | (1) |
|
|
349 | (1) |
|
12.5.3 Branch-line Coupler |
|
|
349 | (4) |
|
|
353 | (2) |
|
12.6 Power Combiners and Dividers |
|
|
355 | (2) |
|
12.6.1 Wilkinson Combiner |
|
|
355 | (1) |
|
|
356 | (1) |
|
12.6.3 Branch-type Couplers and Power Dividers |
|
|
356 | (1) |
|
|
357 | (2) |
|
|
357 | (2) |
|
12.8 Integrated Components |
|
|
359 | (6) |
|
|
360 | (1) |
|
12.8.2 On-chip Capacitors |
|
|
360 | (2) |
|
|
362 | (3) |
|
|
365 | (1) |
|
|
365 | (4) |
13 Stripline Design |
|
369 | (15) |
|
|
369 | (1) |
|
13.2 Symmetrical Stripline |
|
|
370 | (3) |
|
13.2.1 Characteristic Impedance |
|
|
370 | (2) |
|
|
372 | (1) |
|
|
372 | (1) |
|
13.3 Asymmetrical Stripline |
|
|
373 | (2) |
|
|
375 | (1) |
|
|
375 | (4) |
|
13.5.1 Edge-coupled Stripline |
|
|
375 | (3) |
|
13.5.2 Broadside-coupled Stripline |
|
|
378 | (1) |
|
13.6 Double-sided Stripline |
|
|
379 | (1) |
|
|
380 | (1) |
|
13.7.1 Stripline Open Circuit |
|
|
380 | (1) |
|
|
381 | (1) |
|
|
381 | (1) |
|
|
381 | (1) |
|
13.8 Design Recommendations |
|
|
381 | (1) |
|
|
382 | (1) |
|
|
382 | (2) |
14 CPW Design Fundamentals |
|
384 | (59) |
|
14.1 Introduction to Properties of Coplanar Waveguide |
|
|
384 | (5) |
|
|
389 | (2) |
|
14.2.1 Effective Permittivity |
|
|
390 | (1) |
|
14.2.2 Characteristic Impedance |
|
|
390 | (1) |
|
14.3 Formulas for Accurate Calculations |
|
|
391 | (2) |
|
14.3.1 Analysis and Synthesis Approaches |
|
|
391 | (2) |
|
|
393 | (4) |
|
|
393 | (1) |
|
|
394 | (2) |
|
|
396 | (1) |
|
14.4.4 CPW with Intervening SiO2 Layer |
|
|
396 | (1) |
|
|
397 | (11) |
|
14.5.1 Fundamental and Theoretical Considerations |
|
|
397 | (2) |
|
14.5.2 Results from Test Runs using Electromagnetic Simulation |
|
|
399 | (7) |
|
14.5.3 Experimental Results |
|
|
406 | (1) |
|
14.5.4 Leakage Suppression and 50 GHz Interconnect |
|
|
407 | (1) |
|
|
408 | (13) |
|
14.6.1 Step Changes in Width and Separation |
|
|
409 | (3) |
|
|
412 | (1) |
|
14.6.3 Symmetric Series Gap |
|
|
413 | (1) |
|
14.6.4 Coplanar Short Circuit |
|
|
414 | (1) |
|
|
415 | (3) |
|
|
418 | (1) |
|
|
418 | (3) |
|
14.6.8 Cross-Over Junctions |
|
|
421 | (1) |
|
|
421 | (9) |
|
14.7.1 Interdigital Capacitors and Stubs |
|
|
421 | (2) |
|
|
423 | (3) |
|
14.7.3 Couplers and Baluns |
|
|
426 | (1) |
|
|
427 | (1) |
|
14.7.5 CPW and Surface Mount Components |
|
|
428 | (2) |
|
14.8 Variants on the Basic CPW Structure |
|
|
430 | (9) |
|
14.8.1 CPW with Top and Bottom Metal Shields |
|
|
430 | (1) |
|
|
431 | (1) |
|
14.8.3 Trenched CPW on a Silicon MMIC |
|
|
432 | (1) |
|
14.8.4 Differential Line and Coplanar Strip |
|
|
433 | (6) |
|
|
439 | (1) |
|
|
439 | (4) |
15 Slotline |
|
443 | (22) |
|
|
443 | (1) |
|
15.2 Basic Concept and Structure |
|
|
444 | (1) |
|
15.3 Operating Principles and Modes |
|
|
444 | (3) |
|
15.4 Propagation and Dispersion Characteristics |
|
|
447 | (4) |
|
15.5 Evaluation of Guide Wavelength and Characteristic Impedance |
|
|
451 | (2) |
|
|
453 | (2) |
|
15.7 End-effects: Open Circuits and Short Circuits |
|
|
455 | (8) |
|
|
455 | (4) |
|
15.7.2 Chramiec's Measurements |
|
|
459 | (4) |
|
15.7.3 Some Other Results |
|
|
463 | (1) |
|
|
463 | (1) |
|
|
463 | (2) |
16 Slotline Applications |
|
465 | (23) |
|
|
465 | (1) |
|
16.2 Comparators and Couplers |
|
|
465 | (7) |
|
|
465 | (4) |
|
16.2.2 Fundamentals of Parallel-coupled Slotlines |
|
|
469 | (1) |
|
16.2.3 A Three-layer Wideband Coupler |
|
|
470 | (2) |
|
|
472 | (2) |
|
|
474 | (3) |
|
|
477 | (3) |
|
|
480 | (1) |
|
16.7 Isolators and Circulators |
|
|
481 | (5) |
|
16.8 A Double-sided, Balanced Microwave Circuit |
|
|
486 | (1) |
|
|
486 | (1) |
|
|
486 | (2) |
17 Transitions |
|
488 | (26) |
|
|
488 | (1) |
|
17.2 Coaxial-to-microstrip Transitions |
|
|
488 | (2) |
|
17.3 Waveguide-to-microstrip Transitions |
|
|
490 | (5) |
|
17.3.1 Ridgeline Transformer Insert |
|
|
490 | (2) |
|
17.3.2 Mode Changer and Balun |
|
|
492 | (1) |
|
17.3.3 A Waveguide-to-microstrip Power Splitter |
|
|
493 | (1) |
|
17.3.4 Slot-coupled Antenna Waveguide-to-microstrip Transition |
|
|
494 | (1) |
|
17.4 Transitions between CPW and other Mediums |
|
|
495 | (3) |
|
17.5 Slotline Transitions |
|
|
498 | (12) |
|
17.5.1 Microstrip-slotline Transition, Antar |
|
|
498 | (1) |
|
17.5.2 Microstrip-slotline Transition, Chramiec |
|
|
499 | (1) |
|
17.5.3 Slotline-microstrip Transition, Podcameui and Coimbra |
|
|
500 | (1) |
|
17.5.4 Microstrip-slot Dispersion, Itoh |
|
|
500 | (1) |
|
17.5.5 Microstrip-slotline Transitions, Yang |
|
|
500 | (1) |
|
17.5.6 Microstrip-slotline Transitions, Schuppert |
|
|
501 | (4) |
|
17.5.7 Microstrip-slotline-microstrip Transitions |
|
|
505 | (2) |
|
17.5.8 Microstrip-slotline Transition with Open and Short-circuited Lines |
|
|
507 | (2) |
|
17.5.9 Coaxial-Slotline and Microstrip-Slotline Transition, Knorr |
|
|
509 | (1) |
|
17.5.10 Slotline-Stripline Transition. Aikawa et al. |
|
|
510 | (1) |
|
17.6 Other Microstrip Transitions |
|
|
510 | (1) |
|
|
511 | (1) |
|
|
511 | (3) |
18 Measurements of Planar Transmission Line Structures |
|
514 | (27) |
|
|
514 | (1) |
|
18.2 Instrumentation Systems for Microstrip Measurements |
|
|
514 | (1) |
|
18.3 Measurement of Scattering Parameters |
|
|
515 | (4) |
|
18.3.1 Some S Parameter Relationships in Interpreting Interconnect Measurements |
|
|
517 | (2) |
|
18.3.2 Fitting an Equivalent Circuit |
|
|
519 | (1) |
|
18.3.3 Standing-wave Indicators in Microstrip |
|
|
519 | (1) |
|
18.4 Measurement of Substrate Properties |
|
|
519 | (4) |
|
18.4.1 Determining Effective Permittivity from Transmission Line Measurements |
|
|
520 | (2) |
|
18.4.2 Resonance-based Permittivity Determination |
|
|
522 | (1) |
|
18.5 Microstrip Resonator Methods |
|
|
523 | (10) |
|
18.5.1 The Ring Resonator |
|
|
524 | (1) |
|
18.5.2 The Side-coupled Open-circuit-terminated Straight Resonator |
|
|
525 | (1) |
|
18.5.3 Series-gap Coupling of Microstrips |
|
|
526 | (2) |
|
18.5.4 Series-gap-coupled Straight Resonator Pairs |
|
|
528 | (2) |
|
18.5.5 The Resonant Technique due to Richings and Easter |
|
|
530 | (1) |
|
18.5.6 The Symmetrical Straight Resonator |
|
|
531 | (1) |
|
18.5.7 Resonance Methods for the Determination of Discontinuities other than Open Circuits |
|
|
532 | (1) |
|
18.6 Q Factor Measurements |
|
|
533 | (2) |
|
18.7 Measurements of Parallel-coupled Microstrips |
|
|
535 | (2) |
|
18.8 Time-domain Reflectometry Techniques |
|
|
537 | (2) |
|
|
539 | (1) |
|
|
539 | (2) |
19 Filters Using Planar Transmission Lines |
|
541 | (35) |
|
|
541 | (1) |
|
|
541 | (13) |
|
19.2.1 Maximally Flat (Butterworth) Lowpass Filter Prototype |
|
|
542 | (1) |
|
19.2.2 Chebyshev Lowpass Prototype |
|
|
543 | (1) |
|
19.2.3 Impedance and Admittance Inverters |
|
|
544 | (4) |
|
19.2.4 Using Inverters to Transform Between Series and Shunt Elements |
|
|
548 | (1) |
|
19.2.5 Ladder Prototype with Impedance Inverters |
|
|
549 | (1) |
|
19.2.6 Lumped-element Model of an Inverter |
|
|
550 | (1) |
|
19.2.7 Moderate Bandwidth Transmission Line Stub Model of an Inverter |
|
|
550 | (2) |
|
|
552 | (1) |
|
19.2.9 Filter Transformations |
|
|
553 | (1) |
|
19.2.10 Impedance Transformation |
|
|
553 | (1) |
|
19.2.11 Frequency Transformation |
|
|
554 | (1) |
|
19.2.12 Filter Type Transformation |
|
|
554 | (1) |
|
|
554 | (5) |
|
19.3.1 Lowpass Filters Formed with Cascaded Microstrips |
|
|
554 | (4) |
|
|
558 | (1) |
|
19.4 Microstrip Bandpass Filters |
|
|
559 | (2) |
|
19.4.1 Bandpass Filter Prototypes |
|
|
559 | (1) |
|
19.4.2 End-coupled Bandpass Filters |
|
|
559 | (2) |
|
19.5 Parallel-coupled Line Bandpass Filters |
|
|
561 | (11) |
|
19.5.1 Interdigitated Filters |
|
|
562 | (1) |
|
19.5.2 Edge-coupled PCL Bandpass Filters |
|
|
562 | (4) |
|
|
566 | (1) |
|
|
566 | (1) |
|
19.5.5 Miniature Coupled Line Filters with Extended Stopband |
|
|
567 | (1) |
|
19.5.6 Improvements to the Basic PCL Filter Response |
|
|
567 | (1) |
|
19.5.7 Case Study: PCL Edge-coupled Bandpass Filter |
|
|
568 | (4) |
|
19.6 Filter Design Accounting for Losses |
|
|
572 | (1) |
|
19.7 Dielectric Resonators and Filters Using Them |
|
|
572 | (1) |
|
19.8 Spurline Bandstop Filters |
|
|
573 | (2) |
|
|
575 | (1) |
|
|
575 | (1) |
20 Magnetic Materials and Planar Transmission Lines |
|
576 | (34) |
|
|
576 | (1) |
|
20.2 Microwave Magnetic Materials |
|
|
577 | (10) |
|
20.2.1 Alignment of Elementary Magnetic Moments |
|
|
577 | (1) |
|
20.2.2 The Physics of Magnetic Materials |
|
|
578 | (4) |
|
20.2.3 The Physics of Magnetized Ferromagnetic Materials |
|
|
582 | (2) |
|
20.2.4 Phasor Relationships of the B and H Fields |
|
|
584 | (1) |
|
20.2.5 Other Directions of Magnetization |
|
|
585 | (1) |
|
|
586 | (1) |
|
20.3 Effective Permeability of Magnetic Materials |
|
|
587 | (2) |
|
20.3.1 Effective Permeability of Uhmagnetized Materials |
|
|
587 | (1) |
|
20.3.2 Effective Permeability of Magnetized Materials |
|
|
587 | (1) |
|
|
588 | (1) |
|
20.4 Microstrip on a Ferrite Substrate |
|
|
589 | (3) |
|
20.4.1 Effective Substrate Permeability |
|
|
589 | (1) |
|
20.4.2 Magnetic Filling Factor |
|
|
590 | (1) |
|
20.4.3 Effective Microstrip Permeability |
|
|
590 | (2) |
|
20.5 Isolators and Circulators |
|
|
592 | (3) |
|
|
592 | (2) |
|
|
594 | (1) |
|
20.6 Transmission Lines Using Metaconductors |
|
|
595 | (11) |
|
20.6.1 A Study of a Metaconductor-based CPW Line |
|
|
597 | (9) |
|
20.7 Frequency Selective Limiter |
|
|
606 | (1) |
|
|
607 | (1) |
|
|
607 | (3) |
21 Interconnects for Digital Systems |
|
610 | (19) |
|
|
610 | (1) |
|
21.2 Overview of On-chip Interconnects |
|
|
610 | (3) |
|
21.2.1 Types of On-chip Interconnects |
|
|
611 | (2) |
|
21.3 RC Modeling of On-chip Interconnects |
|
|
613 | (6) |
|
|
614 | (3) |
|
|
617 | (2) |
|
|
619 | (3) |
|
21.4.1 When are Inductance Effects Important? |
|
|
619 | (3) |
|
21.4.2 Inductance Extraction |
|
|
622 | (1) |
|
|
622 | (3) |
|
21.6 Resonant Clock Distribution |
|
|
625 | (1) |
|
|
626 | (1) |
|
|
627 | (2) |
A Physical and Mathematical Properties |
|
629 | (6) |
|
|
629 | (1) |
|
|
629 | (2) |
|
A.3 Physical and Mathematical Constants |
|
|
631 | (1) |
|
A.4 Basis of Electromagnetic SI Units |
|
|
631 | (1) |
|
A.5 Relationship of SI Units to CGS Units |
|
|
632 | (3) |
B Material Properties |
|
635 | (8) |
|
|
642 | (1) |
C RF and Microwave Substrates |
|
643 | (4) |
|
|
643 | (1) |
|
|
644 | (3) |
Index |
|
647 | |