Muutke küpsiste eelistusi

E-raamat: Foundations of Perturbative QCD

(Pennsylvania State University)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"The most non-trivial of the established microscopic theories of physics is QCD: the theory of the strong interaction. A critical link between theory and experiment is provided by the methods of perturbative QCD, notably the well-known factorization theorems. Giving an accurate account of the concepts, theorems and their justification, this book is a systematic treatment of perturbative QCD. As well as giving a mathematical treatment, the book relates the concepts to experimental data, giving strong motivations for the methods. It also examines in detail transverse-momentum-dependent parton densities, an increasingly important subject not normally treated in other books. Ideal for graduate students starting their work in high-energy physics, it will alsointerest experienced researchers wanting a clear account of the subject"--

Provided by publisher.

Arvustused

"This book fills a gap and provides a detailed and pedagogical exposition of an important aspect of perturbative QCD." Stefan Weinzierl, Mathematical Reviews

Muu info

A systematic treatment of perturbative QCD, covering the concepts, theorems and their justification, ideal for graduate students and researchers.
Acknowledgments xii
1 Introduction
1(7)
1.1 Factorization and high-energy collisions
3(3)
1.2 Why we trust QCD is correct
6(1)
1.3 Notation
6(1)
1.4 Problems and exercises
7(1)
2 Why QCD?
8(28)
2.1 QCD: statement of the theory
9(1)
2.2 Development of QCD
10(6)
2.3 Deeply inelastic scattering
16(7)
2.4 Parton model
23(5)
2.5 Asymptotic freedom
28(1)
2.6 Justification of QCD
29(2)
2.7 QCD in the full Standard Model
31(1)
2.8 Beyond the Standard Model
32(1)
2.9 Relation between fields and particles
33(3)
Exercises
34(2)
3 Basics of QCD
36(33)
3.1 Quantization
36(3)
3.2 Renormalization
39(6)
3.3 Renormalization counterterms of QCD
45(3)
3.4 Meaning of unit of mass, renormalization scale
48(3)
3.5 Renormalization group
51(3)
3.6 Solution of RG equations
54(4)
3.7 Values of RG coefficients
58(2)
3.8 Symmetries and approximate symmetries of QCD
60(2)
3.9 Dealing with quark masses
62(2)
3.10 CWZ (ACOT) method for heavy quarks
64(2)
3.11 Relating CWZ subschemes with different numbers of active quarks
66(3)
Exercises
67(2)
4 Infra-red safety and non-safety
69(18)
4.1 e+e- total cross section
69(6)
4.2 Explicit calculations
75(6)
4.3 Evolution of state
81(3)
4.4 Dispersion relation and effective virtuality of final-state quarks and gluons
84(2)
4.5 Generalizations
86(1)
Exercises
86(1)
5 Libby-Sterman analysis and power-counting
87(74)
5.1 High-energy asymptotics and mass singularities
88(3)
5.2 Reduced graphs and space-time propagation
91(1)
5.3 Examples of general reduced graphs
92(13)
5.4 One-loop vertex graph
105(6)
5.5 Power-counting for vertex graph
111(14)
5.6 Which reactions have a pinch in the Glauber region?
125(5)
5.7 Coordinates for a PSS
130(4)
5.8 Power-counting
134(12)
5.9 Catalog of leading regions
146(2)
5.10 Power-counting with multiple regions
148(8)
5.11 Determination of Glauber-like regions
156(5)
Exercises
158(3)
6 Parton model to parton theory: simple model theories
161(52)
6.1 Field theory formulation of parton model
161(9)
6.2 When is the parton model valid?
170(4)
6.3 Parton densities as operator matrix elements
174(3)
6.4 Consequences of rotation and parity invariance: polarization dependence
177(2)
6.5 Polarization and polarized parton densities in spin-1/2 target
179(1)
6.6 Light-front quantization
180(5)
6.7 Parton densities as number densities
185(5)
6.8 Unintegrated parton densities
190(1)
6.9 Properties of parton densities
190(11)
6.10 Feynman rules for pdfs
201(1)
6.11 Calculational examples
202(11)
Exercises
210(3)
7 Parton theory: further development
213(30)
7.1 DIS with weak interactions, neutrino scattering, etc.
213(4)
7.2 Light-front perturbation theory
217(8)
7.3 Light-front wave functions
225(2)
7.4 Light-front quantization in gauge theories
227(2)
7.5 Parton densities in gauge theories
229(6)
7.6 Feynman rules for gauge-invariant parton densities
235(2)
7.7 Interpretation of Wilson lines within parton model
237(6)
Exercises
241(2)
8 Factorization for DIS, mostly in simple field theories
243(41)
8.1 Factorization: overall view
243(2)
8.2 Elementary treatment of factorization
245(6)
8.3 Renormalization of parton densities
251(10)
8.4 Renormalization group, and DGLAP equation
261(1)
8.5 Moments and Mellin transform
262(1)
8.6 Sum rules for parton densities and DGLAP kernels, including in QCD
263(1)
8.7 Renormalization calculations: model theory
264(5)
8.8 Successive approximation method
269(2)
8.9 Derivation of factorization by ladder method
271(5)
8.10 Factorization formula for structure functions
276(4)
8.11 Transverse-spin dependence at leading power?
280(4)
Exercises
282(2)
9 Corrections to the parton model in QCD
284(29)
9.1 Lowest order
284(1)
9.2 Projections onto structure functions
284(1)
9.3 Complications in QCD
285(1)
9.4 One-loop renormalization calculations in QCD
286(7)
9.5 One-loop renormalization by subtraction of asymptote
293(2)
9.6 DIS on partonic target
295(1)
9.7 Computation of NLO gluon coefficient function
296(4)
9.8 Choice of renormalization scale μ
300(1)
9.9 NLO quark coefficient
301(5)
9.10 Hard scattering with quark masses
306(1)
9.11 Critique of conventional treatments
307(2)
9.12 Summary of known higher-order corrections
309(1)
9.13 Phenomenology
310(3)
Exercises
312(1)
10 Factorization and subtractions
313(85)
10.1 Subtraction method
314(6)
10.2 Simple example of subtraction method
320(1)
10.3 Sudakov form factor
321(2)
10.4 Region approximator TR for Sudakov form factor
323(7)
10.5 One-loop Sudakov form factor
330(15)
10.6 Rationale for definition of TR
345(6)
10.7 General derivation of region decomposition
351(8)
10.8 Sudakov form factor factorization: first version
359(15)
10.9 Factorization in terms of unsubtracted factors
374(1)
10.10 Evolution
374(4)
10.11 Sudakov: redefinition of factors
378(10)
10.12 Calculations for Sudakov problem
388(5)
10.13 Deduction of some non-leading logarithms
393(1)
10.14 Comparisons with other work
394(4)
Exercises
395(3)
11 DIS and related processes in QCD
398(28)
11.1 General principles
398(1)
11.2 Regions and PSSs, with uncut hadronic amplitude
399(5)
11.3 Factorization for DIS
404(7)
11.4 Renormalization of parton densities, DGLAP evolution
411(1)
11.5 DIS with weak interactions
412(1)
11.6 Polarized DIS, especially transverse polarization
412(1)
11.7 Quark masses
413(2)
11.8 DVCS and DDVCS
415(1)
11.9 Ward identities to convert K gluons to Wilson line
416(10)
Exercises
425(1)
12 Fragmentation functions: e+e- annihilation to hadrons, and SIDIS
426(53)
12.1 Structure-function analysis of one-particle inclusive cross section
427(2)
12.2 Statement of factorization etc. for e+e_ → h(p) + X
429(3)
12.3 LO calculation
432(1)
12.4 Introduction to fragmentation functions
433(6)
12.5 Leading regions and issues in a gauge theory
439(5)
12.6 Which gauge to use in a proof?
444(3)
12.7 Unitarity sum over jets/sum over cuts
447(1)
12.8 Factorization for e+e- → h(p) + X in gauge theory
448(13)
12.9 Use of perturbative calculations
461(1)
12.10 One-loop renormalization of fragmentation function
461(3)
12.11 One-loop coefficient functions
464(1)
12.12 Non-perturbative effects and factorization
465(1)
12.13 Generalizations
466(4)
12.14 Semi-inclusive deeply inelastic scattering
470(5)
12.15 Target fragmentation region: fracture functions
475(4)
Exercises
477(2)
13 TMD factorization
479(61)
13.1 Overview of two-particle-inclusive e+e- annihilation
479(2)
13.2 Kinematics, coordinate frames, and structure functions
481(4)
13.3 Region analysis
485(6)
13.4 Collinear factors
491(3)
13.5 Initial version of factorization with TMD fragmentation
494(1)
13.6 Factorization and transverse coordinate space
495(1)
13.7 Final version of factorization for e+e- annihilation
496(5)
13.8 Evolution equations for TMD fragmentation functions
501(1)
13.9 Flavor dependence of CS and RG evolution
502(1)
13.10 Analysis of CS kernel K: perturbative and non-perturbative
503(4)
13.11 Relation of TMD to integrated fragmentation function
507(6)
13.12 Correction term for large qhr
513(1)
13.13 Using TMD factorization
514(5)
13.14 NLO calculation of TMD fragmentation function at small bT and at large kT
519(7)
13.15 SIDIS and TMD parton densities
526(6)
13.16 Polarization issues
532(1)
13.17 Implications of time-reversal invariance
533(7)
Exercises
537(3)
14 Inclusive processes in hadron-hadron collisions
540(33)
14.1 Overview
540(2)
14.2 Drell-Yan process: kinematics etc.
542(3)
14.3 Glauber region example
545(8)
14.4 Factorization for Drell-Yan
553(9)
14.5 TMD pdfs and Drell-Yan process
562(7)
14.6 Calculations with initial-state partons
569(1)
14.7 Production of hadrons
570(3)
Exercises
571(2)
15 Introduction to more advanced topics
573(9)
15.1 Light-front wave functions and exclusive scattering at large momentum transfer
574(1)
15.2 Exclusive diffraction: generalized parton densities
574(1)
15.3 Small-x, BFKL, perturbative Regge physics
575(1)
15.4 Resummation, etc.
576(1)
15.5 Methods for efficient high-order calculations
577(1)
15.6 Monte-Carlo event generators
577(1)
15.7 Heavy quarks
578(1)
15.8 Large x
579(1)
15.9 Soft-collinear effective theory (SCET)
579(1)
15.10 Higher twist: power corrections
580(2)
Appendix A Notations, conventions, standard mathematical results
582(13)
A.1 General notations
582(1)
A.2 Units, and conversion factors
582(1)
A.3 Acronyms and abbreviations
583(1)
A.4 Vectors, metric, etc.
584(1)
A.5 Renormalization group (RG)
584(1)
A.6 Lorentz, vector, color etc. sub- and superscripts
585(1)
A.7 Polarization and spin
585(1)
A.8 Structure functions
586(1)
A.9 States, cross sections, integrals over particle momentum
587(1)
A.10 Dirac, or gamma, matrices
587(1)
A.11 Group theory
588(1)
A.12 Dimensional regularization and MS: basics
589(1)
A.13 Dimensional regularization: standard integrals
590(1)
A.14 Properties of Γ function
591(1)
A.15 Plus distributions, etc.
591(1)
A.16 Feynman parameters
592(1)
A.17 Orders of magnitude, estimation, etc.
592(3)
Appendix B Light-front coordinates, rapidity, etc.
595(5)
B.1 Definition
595(1)
B.2 Boosts
596(1)
B.3 Rapidity
596(2)
B.4 Pseudo-rapidity
598(1)
B.5 Rapidity distributions in high-energy collisions
598(2)
Appendix C Summary of primary results
600(3)
References 603(14)
Index 617
John Collins is Distinguished Professor of Physics at Pennsylvania State University. He has lengthy experience in perturbative QCD. He has proved a number of the fundamental theorems which form the main content of this book, and has a record of formulating and deriving novel results in QCD. During his career he has received several awards, including a Guggenheim fellowship, a Humboldt Research Award, a Mercator professorship and the J. J. Sakurai prize.