Muutke küpsiste eelistusi

E-raamat: Foundations of Programming, Statistics, and Machine Learning for Business Analytics

  • Formaat: 512 pages
  • Ilmumisaeg: 22-Apr-2023
  • Kirjastus: Sage Publications Ltd
  • Keel: eng
  • ISBN-13: 9781529621563
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 51,86 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 512 pages
  • Ilmumisaeg: 22-Apr-2023
  • Kirjastus: Sage Publications Ltd
  • Keel: eng
  • ISBN-13: 9781529621563
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Business Analysts and Data Scientists are in huge demand, as global companies seek to digitally transform themselves and leverage their data resources to realize competitive advantage.

This book covers all the fundamentals, from statistics to programming to business applications, to equip you with the solid foundational knowledge needed to progress in business analytics.  

Assuming no prior knowledge of programming or statistics, this book takes a simple step-by-step approach which makes potentially intimidating topics easy to understand, by keeping Maths to a minimum and including examples of business analytics in practice.

Key features:

·       Introduces programming fundamentals using R and Python

·       Covers data structures, data management and manipulation and data visualization

·       Includes interactive coding notebooks so that you can build up your programming skills progressively

Suitable as an essential text for undergraduate and postgraduate students studying Business Analytics or as pre-reading for students studying Data Science.

Ram Gopal is Pro-Dean and Professor of Information Systems at the University of Warwick.

Daniel Philps is an Artificial Intelligence Researcher and Head of Rothko Investment Strategies.

Tillman Weyde is Senior Lecturer at City, University of London.



This book provides an introduction to the key concepts in programming, statistics and machine learning needed by business analytics students, assuming no prior knowledge and taking a step-by-step approach to help students build up their confidence.

Chapter 1: Introduction To Programming And Statistics
Chapter 2: Summarizing And Visualizing Data
Chapter 3: Summarizing And Visualizing Data
Chapter 4: Programming Fundamentals
Chapter 5: Programming Fundamentals
Chapter 6: Distributions
Chapter 7: Statistical Testing Concepts and Strategy
Chapter 8: Statistical Testing Concepts and Strategy
Chapter 9: Nonparametric Tests
Chapter 10: Reality Check
Chapter 11: Fundamentals of Estimation
Chapter 12: Linear Models
Chapter 13: General Linear Models
Chapter 14: Regression Diagnostics And Structure
Chapter 15: Timeseries And Forecasting
Chapter 16: Introduction To Machine Learning
Chapter 17: Model Selection And Cross Validation
Chapter 18: Regression Models In Machine Learning
Chapter 19: Classification Models And Evaluation
Chapter 20: Automated Machine Learning
Ram D. Gopal is the Information Systems Societys Distinguished Fellow and Alan Turing Institutes Turing Fellow, a Professor of Information Systems and Management, and Pro-Dean for Research, Engagement, and Impact at the Warwick Business School.  Dan Philps is a veteran quantitative investment manager and a widely published artificial intelligence (AI) researcher.  Tillman Weyde is a Reader in Computer Science at City, University of London. Before joining City in 2005, he worked as a researcher in the Research Department for Music and Media Technology at the University of Osnabrück.