Series Editor's Preface |
|
xix | |
Preface |
|
xxiii | |
|
|
1 | (14) |
|
1.1 Signals, Operators, and Imaging Systems |
|
|
1 | (2) |
|
|
1 | (2) |
|
1.2 The Three Imaging Tasks |
|
|
3 | (1) |
|
1.3 Examples of Optical Imaging |
|
|
4 | (4) |
|
|
4 | (1) |
|
|
5 | (2) |
|
1.3.3 System Evaluation of Hubble Space Telescope |
|
|
7 | (1) |
|
1.3.4 Imaging by Ground-Based Telescopes |
|
|
8 | (1) |
|
1.4 Imaging Tasks in Medical Imaging |
|
|
8 | (7) |
|
|
9 | (2) |
|
|
11 | (2) |
|
1.4.3 Computed Tomographic Radiography |
|
|
13 | (2) |
|
2 Operators and Functions |
|
|
15 | (14) |
|
2.1 Classes of Imaging Operators |
|
|
15 | (1) |
|
|
15 | (1) |
|
|
16 | (1) |
|
2.2 Continuous and Discrete Functions |
|
|
16 | (13) |
|
|
16 | (1) |
|
2.2.2 Functions with Continuous and Discrete Domains |
|
|
17 | (2) |
|
2.2.3 Continuous and Discrete Ranges |
|
|
19 | (1) |
|
2.2.4 Discrete Domain and Range- "Digitized" Functions |
|
|
20 | (1) |
|
2.2.5 Periodic, Aperiodic, and Harmonic Functions |
|
|
21 | (5) |
|
2.2.6 Symmetry Properties of Functions |
|
|
26 | (1) |
|
|
27 | (2) |
|
3 Vectors with Real-Valued Components |
|
|
29 | (22) |
|
|
29 | (5) |
|
3.1.1 Scalar Product of Distinct Vectors |
|
|
32 | (2) |
|
3.1.2 Projection of One Vector onto Another |
|
|
34 | (1) |
|
|
34 | (7) |
|
3.2.1 Simultaneous Evaluation of Multiple Scalar Products |
|
|
34 | (2) |
|
3.2.2 Matrix-Matrix Multiplication |
|
|
36 | (1) |
|
3.2.3 Square and Diagonal Matrices, Identity Matrix |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
39 | (2) |
|
|
41 | (10) |
|
|
43 | (1) |
|
3.3.2 Vector Subspaces Associated with a System |
|
|
44 | (4) |
|
|
48 | (3) |
|
4 Complex Numbers and Functions |
|
|
51 | (14) |
|
4.1 Arithmetic of Complex Numbers |
|
|
52 | (1) |
|
4.1.1 Equality of Two Complex Numbers |
|
|
52 | (1) |
|
4.1.2 Sum and Difference of Two Complex Numbers |
|
|
52 | (1) |
|
4.1.3 Product of Two Complex Numbers |
|
|
53 | (1) |
|
4.1.4 Reciprocal of a Complex Numbers |
|
|
53 | (1) |
|
4.1.5 Ratio of Two Complex Numbers |
|
|
53 | (1) |
|
4.2 Graphical Representation of Complex Numbers |
|
|
53 | (3) |
|
|
56 | (6) |
|
4.4 Generalized Spatial Frequency-Negative Frequencies |
|
|
62 | (1) |
|
4.5 Argand Diagrams of Complex-Valued Functions |
|
|
62 | (3) |
|
|
63 | (2) |
|
5 Complex-Valued Matrices and Systems |
|
|
65 | (32) |
|
5.1 Vectors with Complex-Valued Components |
|
|
65 | (2) |
|
|
66 | (1) |
|
5.1.2 Products of Complex-Valued Matrices and Vectors |
|
|
67 | (1) |
|
5.2 Matrix Analogues of Shift-Invariant Systems |
|
|
67 | (17) |
|
5.2.1 Eigenvectors and Eigenvalues |
|
|
70 | (2) |
|
5.2.2 Projections onto Eigenvectors |
|
|
72 | (3) |
|
5.2.3 Diagonalization of a Circulant Matrix |
|
|
75 | (5) |
|
5.2.4 Matrix Operators for Shift-Invariant Systems |
|
|
80 | (4) |
|
5.2.5 Alternative Ordering of Eigenvectors |
|
|
84 | (1) |
|
5.3 Matrix Formulation of Imaging Tasks |
|
|
84 | (4) |
|
5.3.1 Inverse Imaging Problem |
|
|
84 | (2) |
|
5.3.2 Solution of Inverse Problems via Diagonalization |
|
|
86 | (1) |
|
5.3.3 Matrix-Vector Formulation of System Analysis |
|
|
87 | (1) |
|
5.4 Continuous Analogues of Vector Operations |
|
|
88 | (9) |
|
5.4.1 Inner Product of Continuous Functions |
|
|
88 | (3) |
|
5.4.2 Complete Sets of Basis Functions |
|
|
91 | (1) |
|
5.4.3 Orthonormal Basis Functions |
|
|
92 | (1) |
|
5.4.4 Continuous Analogue of DFT |
|
|
93 | (1) |
|
5.4.5 Eigenfunctions of Continuous Operators |
|
|
93 | (1) |
|
|
94 | (3) |
|
|
97 | (74) |
|
6.1 Definitions of 1-D Special Functions |
|
|
98 | (28) |
|
|
99 | (1) |
|
|
99 | (2) |
|
|
101 | (1) |
|
|
101 | (1) |
|
|
102 | (2) |
|
6.1.6 Exponential Function |
|
|
104 | (1) |
|
|
105 | (4) |
|
|
109 | (2) |
|
|
111 | (1) |
|
|
112 | (3) |
|
6.1.11 Quadratic-Phase Sinusoid- "Chirp" Function |
|
|
115 | (2) |
|
|
117 | (2) |
|
6.1.13 "SuperGaussian" Function |
|
|
119 | (2) |
|
|
121 | (3) |
|
6.1.15 Lorentzian Function |
|
|
124 | (1) |
|
6.1.16 Thresholded Functions |
|
|
125 | (1) |
|
6.2 1-D Dirac Delta Function |
|
|
126 | (16) |
|
6.2.1 1-D Dirac Delta Function Raised to a Power |
|
|
131 | (1) |
|
6.2.2 Sifting Property of 1-D Dirac Delta Function |
|
|
132 | (1) |
|
6.2.3 Symmetric (Even) Pair of 1-D Dirac Delta Functions |
|
|
133 | (1) |
|
6.2.4 Antisymmetric (Odd) Pair of 1-D Dirac Delta Functions |
|
|
134 | (1) |
|
|
135 | (2) |
|
6.2.6 Derivatives of 1-D Dirac Delta Function |
|
|
137 | (2) |
|
6.2.7 Dirac Delta Function with Functional Argument |
|
|
139 | (3) |
|
6.3 1-D Complex-Valued Special Functions |
|
|
142 | (7) |
|
6.3.1 Complex Linear-Phase Sinusoid |
|
|
143 | (1) |
|
6.3.2 Complex Quadratic-Phase Exponential Function |
|
|
143 | (2) |
|
6.3.3 "Superchirp" Function |
|
|
145 | (2) |
|
6.3.4 Complex-Valued Lorentzian Function |
|
|
147 | (2) |
|
6.3.5 Logarithm of the Complex Amplitude |
|
|
149 | (1) |
|
6.4 1-D Stochastic Functions-Noise |
|
|
149 | (13) |
|
6.4.1 Moments of Probability Distributions |
|
|
151 | (1) |
|
6.4.2 Discrete Probability Laws |
|
|
152 | (4) |
|
6.4.3 Continuous Probability Distributions |
|
|
156 | (4) |
|
6.4.4 Signal-to-Noise Ratio |
|
|
160 | (1) |
|
6.4.5 Example: Variance of a Sinusoid |
|
|
161 | (1) |
|
6.4.6 Example: Variance of a Square Wave |
|
|
161 | (1) |
|
6.4.7 Approximations to SNR |
|
|
161 | (1) |
|
6.5 Appendix A: Area of SINC[ x] and SINC2[ x] |
|
|
162 | (4) |
|
6.6 Appendix B: Series Solutions for Bessel Functions J0[ x] and J1[ x] |
|
|
166 | (5) |
|
|
169 | (2) |
|
|
171 | (36) |
|
7.1 2-D Separable Functions |
|
|
171 | (3) |
|
7.1.1 Rotations of 2-D Separable Functions |
|
|
172 | (1) |
|
7.1.2 Rotated Coordinates as Scalar Products |
|
|
172 | (2) |
|
7.2 Definitions of 2-D Special Functions |
|
|
174 | (8) |
|
7.2.1 2-D Constant Function |
|
|
174 | (1) |
|
|
175 | (1) |
|
|
176 | (1) |
|
7.2.4 2-D Signum and STEP Functions |
|
|
176 | (2) |
|
|
178 | (1) |
|
|
178 | (2) |
|
7.2.7 2-D Gaussian Function |
|
|
180 | (1) |
|
|
180 | (2) |
|
7.3 2-D Dirac Delta Function and its Relatives |
|
|
182 | (13) |
|
7.3.1 2-D Dirac Delta Function in Cartesian Coordinates |
|
|
183 | (1) |
|
7.3.2 2-D Dirac Delta Function in Polar Coordinates |
|
|
184 | (2) |
|
7.3.3 2-D Separable COMB Function |
|
|
186 | (1) |
|
7.3.4 2-D Line Delta Function |
|
|
187 | (7) |
|
7.3.5 2-D "Cross" Function |
|
|
194 | (1) |
|
|
195 | (1) |
|
7.4 2-D Functions with Circular Symmetry |
|
|
195 | (9) |
|
7.4.1 Cylinder (Circle) Function |
|
|
196 | (1) |
|
7.4.2 Circularly Symmetric Gaussian Function |
|
|
197 | (1) |
|
7.4.3 Circularly Symmetric Bessel Function of Zero Order |
|
|
197 | (3) |
|
7.4.4 Besinc or Sombrero Function |
|
|
200 | (1) |
|
7.4.5 Circular Triangle Function |
|
|
201 | (1) |
|
7.4.6 Ring Delta Function |
|
|
202 | (2) |
|
7.5 Complex-Valued 2-D Functions |
|
|
204 | (1) |
|
7.5.1 Complex 2-D Sinusoid |
|
|
204 | (1) |
|
7.5.2 Complex Quadratic-Phase Sinusoid |
|
|
205 | (1) |
|
7.6 Special Functions of Three (or More) Variables |
|
|
205 | (2) |
|
|
206 | (1) |
|
|
207 | (32) |
|
|
208 | (5) |
|
8.2 Shift-Invariant Operators |
|
|
213 | (3) |
|
8.3 Linear Shift-Invariant (LSI) Operators |
|
|
216 | (6) |
|
8.3.1 Linear Shift-Variant Operators |
|
|
221 | (1) |
|
8.4 Calculating Convolutions |
|
|
222 | (1) |
|
8.4.1 Examples of Convolutions |
|
|
223 | (1) |
|
8.5 Properties of Convolutions |
|
|
223 | (3) |
|
8.5.1 Region of Support of Convolutions |
|
|
225 | (1) |
|
8.5.2 Area of a Convolution |
|
|
225 | (1) |
|
8.5.3 Convolution of Scaled Functions |
|
|
226 | (1) |
|
|
226 | (3) |
|
8.6.1 Autocorrelation of Stochastic Functions |
|
|
228 | (1) |
|
8.6.2 Autocovariance of Stochastic Functions |
|
|
229 | (1) |
|
|
229 | (3) |
|
|
232 | (2) |
|
8.8.1 Line-Spread and Edge-Spread Functions |
|
|
233 | (1) |
|
8.9 Crosscorrelations of 2-D Functions |
|
|
234 | (1) |
|
8.10 Autocorrelations of 2-D Functions |
|
|
235 | (4) |
|
8.10.1 Autocorrelation of the Cylinder Function |
|
|
236 | (1) |
|
|
236 | (3) |
|
9 Fourier Transforms of 1-D Functions |
|
|
239 | (86) |
|
9.1 Transforms of Continuous-Domain Functions |
|
|
239 | (11) |
|
9.1.1 Example 1: Input and Reference Functions are Even Sinusoids |
|
|
242 | (3) |
|
9.1.2 Example 2: Even Sinusoid Input, Odd Sinusoid Reference |
|
|
245 | (1) |
|
9.1.3 Example 3: Odd Sinusoid Input, Even Sinusoid Reference |
|
|
246 | (1) |
|
9.1.4 Example 4: Odd Sinusoid Input and Reference |
|
|
247 | (3) |
|
9.2 Linear Combinations of Reference Functions |
|
|
250 | (4) |
|
|
251 | (1) |
|
9.2.2 Examples of the Hartley Transform |
|
|
251 | (1) |
|
9.2.3 Inverse of the Hartley Transform |
|
|
252 | (2) |
|
9.3 Complex-Valued Reference Functions |
|
|
254 | (2) |
|
9.4 Transforms of Complex-Valued Functions |
|
|
256 | (3) |
|
9.5 Fourier Analysis of Dirac Delta Functions |
|
|
259 | (2) |
|
9.6 Inverse Fourier Transform |
|
|
261 | (2) |
|
9.7 Fourier Transforms of 1-D Special Functions |
|
|
263 | (17) |
|
9.7.1 Fourier Transform of δ[ x] |
|
|
264 | (1) |
|
9.7.2 Fourier Transform of Rectangle |
|
|
264 | (2) |
|
9.7.3 Fourier Transforms of Sinusoids |
|
|
266 | (2) |
|
9.7.4 Fourier Transform of Signum and Step |
|
|
268 | (2) |
|
9.7.5 Fourier Transform of Exponential |
|
|
270 | (5) |
|
9.7.6 Fourier Transform of Gaussian |
|
|
275 | (1) |
|
9.7.7 Fourier Transforms of Chirp Functions |
|
|
276 | (3) |
|
9.7.8 Fourier Transform of COMB Function |
|
|
279 | (1) |
|
9.8 Theorems of the Fourier Transform |
|
|
280 | (40) |
|
9.8.1 Multiplication by Constant |
|
|
281 | (1) |
|
9.8.2 Addition Theorem (Linearity) |
|
|
281 | (1) |
|
9.8.3 Fourier Transform of a Fourier Transform |
|
|
281 | (3) |
|
9.8.4 Central-Ordinate Theorem |
|
|
284 | (1) |
|
|
284 | (3) |
|
|
287 | (2) |
|
|
289 | (6) |
|
|
295 | (2) |
|
|
297 | (1) |
|
9.8.10 Fourier Transform of Complex Conjugate |
|
|
298 | (1) |
|
9.8.11 Fourier Transform of Crosscorrelation |
|
|
299 | (3) |
|
9.8.12 Fourier Transform of Autocorrelation |
|
|
302 | (1) |
|
9.8.13 Rayleigh's Theorem |
|
|
302 | (2) |
|
9.8.14 Parseval's Theorem |
|
|
304 | (2) |
|
9.8.15 Fourier Transform of Periodic Function |
|
|
306 | (1) |
|
9.8.16 Spectrum of Sampled Function |
|
|
307 | (1) |
|
9.8.17 Spectrum of Discrete Periodic Function |
|
|
308 | (1) |
|
9.8.18 Spectra of Stochastic Signals |
|
|
308 | (2) |
|
9.8.19 Effect of Nonlinear Operations of Spectra |
|
|
310 | (10) |
|
9.9 Appendix: Spectrum of Gaussian via Path Integral |
|
|
320 | (5) |
|
|
321 | (4) |
|
10 Multidimensional Fourier Transforms |
|
|
325 | (22) |
|
10.1 2-D Fourier Transforms |
|
|
325 | (2) |
|
10.1.1 2-D Fourier Synthesis |
|
|
326 | (1) |
|
10.2 Spectra of Separable 2-D Functions |
|
|
327 | (8) |
|
10.2.1 Fourier Transforms of Separable Functions |
|
|
328 | (1) |
|
10.2.2 Fourier Transform of δ[ x, y] |
|
|
328 | (2) |
|
10.2.3 Fourier Transform of δ[ x - x0, y - y0] |
|
|
330 | (2) |
|
10.2.4 Fourier Transform of RECT[ x, y] |
|
|
332 | (1) |
|
10.2.5 Fourier Transform of TRI[ x, y] |
|
|
332 | (1) |
|
10.2.6 Fourier Transform of GAUS[ x, y] |
|
|
332 | (2) |
|
10.2.7 Fourier Transform of STEP[ x] . STEP[ y] |
|
|
334 | (1) |
|
10.2.8 Theorems of Spectra of Separable Functions |
|
|
334 | (1) |
|
10.2.9 Superpositions of 2-D Separable Functions |
|
|
335 | (1) |
|
10.3 Theorems of 2-D Fourier Transforms |
|
|
335 | (12) |
|
10.3.1 2-D "Transform-of-a-Transform" Theorem |
|
|
336 | (1) |
|
10.3.2 2-D Scaling Theorem |
|
|
336 | (1) |
|
|
336 | (1) |
|
10.3.4 2-D Filter Theorem |
|
|
337 | (1) |
|
10.3.5 2-D Derivative Theorem |
|
|
338 | (2) |
|
10.3.6 Spectra of Rotated 2-D Functions |
|
|
340 | (1) |
|
10.3.7 Transforms of 2-D Line Delta and Cross Functions |
|
|
341 | (4) |
|
|
345 | (2) |
|
11 Spectra of Circular Functions |
|
|
347 | (24) |
|
11.1 The Hankel Transform |
|
|
347 | (6) |
|
11.1.1 Hankel Transform of Dirac Delta Function |
|
|
351 | (2) |
|
11.2 Inverse Hankel Transform |
|
|
353 | (1) |
|
11.3 Theorems of Hankel Transforms |
|
|
354 | (2) |
|
|
354 | (1) |
|
|
354 | (1) |
|
11.3.3 Central-Ordinate Theorem |
|
|
354 | (1) |
|
11.3.4 Filter and Crosscorrelation Theorems |
|
|
355 | (1) |
|
11.3.5 "Transform-of-a-Transform" Theorem |
|
|
355 | (1) |
|
11.3.6 Derivative Theorem |
|
|
355 | (1) |
|
11.3.7 Laplacian of Circularly Symmetric Function |
|
|
356 | (1) |
|
11.4 Hankel Transforms of Special Functions |
|
|
356 | (9) |
|
11.4.1 Hankel Transform of J0(2πrρ0) |
|
|
356 | (2) |
|
11.4.2 Hankel Transform of CYL(r) |
|
|
358 | (2) |
|
11.4.3 Hankel Transform of r-1 |
|
|
360 | (1) |
|
11.4.4 Hankel Transform from 2-D Fourier Transforms |
|
|
361 | (2) |
|
11.4.5 Hankel Transform of r2 GAUS(r) |
|
|
363 | (1) |
|
11.4.6 Hankel Transform of CTRI(r) |
|
|
364 | (1) |
|
11.5 Appendix: Derivations of Equations (11.12) and (11.14) |
|
|
365 | (6) |
|
|
369 | (2) |
|
|
371 | (50) |
|
12.1 Line-Integral Projections onto Radial Axes |
|
|
371 | (9) |
|
12.1.1 Radon Transform of Dirac Delta Function |
|
|
377 | (2) |
|
12.1.2 Radon Transform of Arbitrary Function |
|
|
379 | (1) |
|
12.2 Radon Transforms of Special Functions |
|
|
380 | (7) |
|
12.2.1 Cylinder Function CYL(r) |
|
|
380 | (2) |
|
12.2.2 Ring Delta Function δ(r - r0) |
|
|
382 | (2) |
|
12.2.3 Rectangle Function RECT[ x, y] |
|
|
384 | (1) |
|
12.2.4 Corral Function COR[ x, y] |
|
|
385 | (2) |
|
12.3 Theorems of the Radon Transform |
|
|
387 | (4) |
|
12.3.1 Radon Transform of a Superposition |
|
|
387 | (1) |
|
12.3.2 Radon Transform of Scaled Function |
|
|
388 | (1) |
|
12.3.3 Radon Transform of Translated Function |
|
|
389 | (1) |
|
12.3.4 Central-Slice Theorem |
|
|
389 | (1) |
|
12.3.5 Filter Theorem of the Radon Transform |
|
|
390 | (1) |
|
12.4 Inverse Radon Transform |
|
|
391 | (11) |
|
12.4.1 Recovery of Dirac Delta Function from Projections |
|
|
392 | (6) |
|
12.4.2 Summation of Projections over Azimuths |
|
|
398 | (4) |
|
12.5 Central-Slice Transform |
|
|
402 | (8) |
|
12.5.1 Radial "Slices" of ƒ[ x, y] |
|
|
402 | (1) |
|
12.5.2 Central-Slice Transforms of Special Functions |
|
|
403 | (6) |
|
12.5.3 Inverse Central-Slice Transform |
|
|
409 | (1) |
|
12.6 Three Transforms of Four Functions |
|
|
410 | (9) |
|
12.7 Fourier and Radon Transforms of Images |
|
|
419 | (2) |
|
|
420 | (1) |
|
13 Approximations to Fourier Transforms |
|
|
421 | (38) |
|
|
421 | (15) |
|
13.1.1 First Moment-Centroid |
|
|
424 | (1) |
|
13.1.2 Second Moment-Moment of Inertia |
|
|
424 | (1) |
|
13.1.3 Central Moments-Variance |
|
|
425 | (2) |
|
13.1.4 Evaluation of 1-D Spectra from Moments |
|
|
427 | (4) |
|
13.1.5 Spectra of 1-D Superchirps via Moments |
|
|
431 | (2) |
|
13.1.6 2-D Moment Theorem |
|
|
433 | (2) |
|
13.1.7 Moments of Circularly Symmetric Functions |
|
|
435 | (1) |
|
13.2 1-D Spectra via Method of Stationary Phase |
|
|
436 | (16) |
|
13.2.1 Examples of Spectra via Stationary Phase |
|
|
440 | (12) |
|
13.3 Central-Limit Theorem |
|
|
452 | (2) |
|
13.4 Width Metrics and Uncertainty Relations |
|
|
454 | (5) |
|
|
454 | (1) |
|
13.4.2 Uncertainty Relation for Equivalent Width |
|
|
455 | (1) |
|
13.4.3 Variance as a Measure of Width |
|
|
455 | (2) |
|
|
457 | (2) |
|
14 Discrete Systems, Sampling, and Quantization |
|
|
459 | (52) |
|
|
460 | (7) |
|
14.1.1 Ideal Sampling of 2-D Functions |
|
|
461 | (1) |
|
14.1.2 Is Sampling a Linear Operation? |
|
|
462 | (1) |
|
14.1.3 Is the Sampling Operation Shift Invariant? |
|
|
462 | (3) |
|
14.1.4 Aliasing Artifacts |
|
|
465 | (2) |
|
14.1.5 Operations Similar to Ideal Sampling |
|
|
467 | (1) |
|
14.2 Ideal Sampling of Special Functions |
|
|
467 | (5) |
|
14.2.1 Ideal Sampling of δ[ x] and COMB[ x] |
|
|
470 | (2) |
|
14.3 Interpolation of Sampled Functions |
|
|
472 | (7) |
|
14.3.1 Examples of Interpolation |
|
|
478 | (1) |
|
14.4 Whittaker-Shannon Sampling Theorem |
|
|
479 | (1) |
|
14.5 Aliasing and Interpolation |
|
|
480 | (3) |
|
14.5.1 Frequency Recovered from Aliased Samples |
|
|
480 | (2) |
|
14.5.2 "Unwrapping" the Phase of Sampled Functions |
|
|
482 | (1) |
|
14.6 "Prefiltering" to Prevent Aliasing |
|
|
483 | (3) |
|
14.6.1 Prefiltered Images Recovered from Samples |
|
|
484 | (1) |
|
14.6.2 Sampling and Reconstruction of Audio Signals |
|
|
485 | (1) |
|
|
486 | (5) |
|
14.8 Realistic Interpolation |
|
|
491 | (9) |
|
14.8.1 Ideal Interpolator for Compact Functions |
|
|
491 | (1) |
|
14.8.2 Finite-Support Interpolators in Space Domain |
|
|
491 | (4) |
|
14.8.3 Realistic Frequency-Domain Interpolators |
|
|
495 | (5) |
|
|
500 | (7) |
|
14.9.1 Quantization "Noise" |
|
|
503 | (2) |
|
14.9.2 SNR of Quantization |
|
|
505 | (2) |
|
14.9.3 Quantizers with Memory - "Error Diffusion" |
|
|
507 | (1) |
|
14.10 Discrete Convolution |
|
|
507 | (4) |
|
|
509 | (2) |
|
15 Discrete Fourier Transforms |
|
|
511 | (62) |
|
15.1 Inverse of the Infinite-Support DFT |
|
|
513 | (1) |
|
15.2 DFT over Finite Interval |
|
|
514 | (13) |
|
15.2.1 Finite DFT of ƒ[ x] = 1[ x] |
|
|
522 | (2) |
|
15.2.2 Scale Factor in DFT |
|
|
524 | (2) |
|
15.2.3 Finite DFT of Discrete Dirac Delta Function |
|
|
526 | (1) |
|
15.2.4 Summary of Finite DFT |
|
|
526 | (1) |
|
15.3 Fourier Series Derived from Fourier Transform |
|
|
527 | (2) |
|
15.4 Efficient Evaluation of the Finite DFT |
|
|
529 | (5) |
|
15.4.1 DFT of Two Samples-The "Butterfly" |
|
|
530 | (1) |
|
15.4.2 DFT of Three Samples |
|
|
531 | (1) |
|
15.4.3 DFT of Four Samples |
|
|
532 | (1) |
|
15.4.4 DFT of Six Samples |
|
|
532 | (1) |
|
15.4.5 DFT of Eight Samples |
|
|
533 | (1) |
|
15.4.6 Complex Matrix for Computing 1-D DFT |
|
|
534 | (1) |
|
15.5 Practical Considerations for DFT and FFT |
|
|
534 | (29) |
|
15.5.1 Computational Intensity |
|
|
534 | (2) |
|
15.5.2 "Centered" versus "Uncentered" Arrays |
|
|
536 | (2) |
|
15.5.3 Units of Measure in the Two Domains |
|
|
538 | (1) |
|
15.5.4 Ensuring Periodicity of Arrays - Data "Windows" |
|
|
539 | (6) |
|
15.5.5 A Garden of 1-D FFT Windows |
|
|
545 | (6) |
|
15.5.6 Undersampling and Aliasing |
|
|
551 | (3) |
|
|
554 | (1) |
|
|
554 | (1) |
|
15.5.9 Discrete Convolution and the Filter Theorem |
|
|
555 | (4) |
|
15.5.10 Discrete Transforms of Quantized Functions |
|
|
559 | (1) |
|
15.5.11 Parseval's Theorem for DFT |
|
|
560 | (2) |
|
15.5.12 Scaling Theorem for Sampled Functions |
|
|
562 | (1) |
|
|
563 | (4) |
|
15.6.1 Interpretation of 2-D FFTs |
|
|
564 | (3) |
|
|
567 | (1) |
|
15.7 Discrete Cosine Transform |
|
|
567 | (6) |
|
|
571 | (2) |
|
|
573 | (30) |
|
|
574 | (2) |
|
|
574 | (1) |
|
16.1.2 Phase ("Allpass") Filters |
|
|
575 | (1) |
|
16.2 Eigenfunctions of Convolution |
|
|
576 | (1) |
|
16.3 Power Transmission of Filters |
|
|
577 | (2) |
|
|
579 | (6) |
|
|
581 | (1) |
|
16.4.2 Ideal 1-D Lowpass Filter |
|
|
581 | (1) |
|
16.4.3 1-D Uniform Averager |
|
|
581 | (2) |
|
16.4.4 2-D Lowpass Filters |
|
|
583 | (2) |
|
|
585 | (4) |
|
16.5.1 Ideal 1-D Highpass Filter |
|
|
585 | (1) |
|
16.5.2 1-D Differentiators |
|
|
586 | (1) |
|
16.5.3 2-D Differentiators |
|
|
587 | (1) |
|
16.5.4 High-Frequency Boost Filters-Image Sharpeners |
|
|
588 | (1) |
|
|
589 | (5) |
|
16.7 Fourier Transform as a Bandpass Filter |
|
|
594 | (2) |
|
16.8 Bandboost and Bandstop Filters |
|
|
596 | (3) |
|
|
599 | (4) |
|
16.9.1 Tiling of Frequency Domain with Orthogonal Wavelets |
|
|
600 | (2) |
|
16.9.2 Example of Wavelet Decomposition |
|
|
602 | (1) |
|
|
602 | (1) |
|
17 Allpass (Phase) Filters |
|
|
603 | (44) |
|
17.1 Power-Series Expansion for Allpass Filters |
|
|
604 | (1) |
|
17.2 Constant-Phase Allpass Filter |
|
|
605 | (1) |
|
17.3 Linear-Phase Allpass Filter |
|
|
606 | (2) |
|
17.4 Quadratic-Phase Filter |
|
|
608 | (7) |
|
17.4.1 Impulse Response and Transfer Function |
|
|
608 | (4) |
|
17.4.2 Scaling of Quadratic-Phase Transfer Function |
|
|
612 | (3) |
|
17.4.3 Limiting Behavior of the Quadratic-Phase Allpass Filter |
|
|
615 | (1) |
|
17.4.4 Impulse Response of Allpass Filters of Order 0, 1, 2 |
|
|
615 | (1) |
|
17.5 Allpass Filters with Higher-Order Phase |
|
|
615 | (4) |
|
17.5.1 Odd-Order Allpass Filters with n≥3 |
|
|
618 | (1) |
|
17.5.2 Even-Order Allpass Filters with n≥4 |
|
|
619 | (1) |
|
17.6 Allpass Random-Phase Filter |
|
|
619 | (7) |
|
17.6.1 Information Recovery after Random-Phase Filtering |
|
|
626 | (1) |
|
17.7 Relative Importance of Magnitude and Phase |
|
|
626 | (2) |
|
17.8 Imaging of Phase Objects |
|
|
628 | (4) |
|
17.9 Chrip Fourier Transform |
|
|
632 | (15) |
|
17.9.1 1-D "M-C-M" Chirp Fourier Transform |
|
|
632 | (2) |
|
17.9.2 1-D "C-M-C" Chirp Fourier Transform |
|
|
634 | (3) |
|
17.9.3 M-C-M and C-M-C with Opposite-Sign Chirps |
|
|
637 | (1) |
|
17.9.4 2-D Chirp Fourier Transform |
|
|
638 | (1) |
|
17.9.5 Optical Correlator |
|
|
638 | (3) |
|
17.9.6 Optical Chirp Fourier Transformer |
|
|
641 | (4) |
|
|
645 | (2) |
|
18 Magnitude-Phase Filters |
|
|
647 | (20) |
|
18.1 Transfer Functions of Three Operations |
|
|
648 | (5) |
|
|
648 | (1) |
|
|
648 | (2) |
|
|
650 | (3) |
|
18.2 Fourier Transform of Ramp Function |
|
|
653 | (1) |
|
|
654 | (4) |
|
18.4 Damped Harmonic Oscillator |
|
|
658 | (3) |
|
18.5 Mixed Filters with Linear or Random Phase |
|
|
661 | (1) |
|
18.6 Mixed Filter with Quadratic Phase |
|
|
661 | (6) |
|
|
666 | (1) |
|
19 Applications of Linear Filters |
|
|
667 | (56) |
|
19.1 Linear Filters for the Imaging Tasks |
|
|
667 | (2) |
|
19.2 Deconvolution - "Inverse Filtering" |
|
|
669 | (10) |
|
19.2.1 Conditions for Exact Recovery via Inverse Filtering |
|
|
671 | (1) |
|
19.2.2 Inverse Filter for Uniform Averager |
|
|
672 | (3) |
|
19.2.3 Inverse Filter for Ideal Lowpass Filter |
|
|
675 | (3) |
|
19.2.4 Inverse Filter for Decaying Exponential |
|
|
678 | (1) |
|
19.3 Optimum Estimators for Signals in Noise |
|
|
679 | (17) |
|
|
680 | (8) |
|
19.3.2 Wiener Filter Example |
|
|
688 | (1) |
|
19.3.3 Wiener-Helstrom Filter |
|
|
689 | (4) |
|
19.3.4 Wiener-Helstrom Filter Example |
|
|
693 | (2) |
|
19.3.5 Constrained Least-Squares Filter |
|
|
695 | (1) |
|
19.4 Detection of Known Signals - Matched Filter |
|
|
696 | (7) |
|
19.4.1 Inputs for Matched Filters |
|
|
701 | (2) |
|
19.5 Analogies of Inverse and Matched Filters |
|
|
703 | (5) |
|
19.5.1 Wiener and Wiener-Helstrom "Matched" Filter |
|
|
706 | (2) |
|
19.6 Approximations to Reciprocal Filters |
|
|
708 | (11) |
|
19.6.1 Small-Order Approximations of Reciprocal Filters |
|
|
711 | (2) |
|
19.6.2 Examples of Approximate Reciprocal Filters |
|
|
713 | (6) |
|
19.7 Inverse Filtering of Shift-Variant Blur |
|
|
719 | (4) |
|
|
720 | (3) |
|
20 Filtering in Discrete Systems |
|
|
723 | (30) |
|
20.1 Translation, Leakage, and Interpolation |
|
|
724 | (4) |
|
|
724 | (2) |
|
|
726 | (2) |
|
20.2 Averaging Operators-Lowpass Filters |
|
|
728 | (3) |
|
|
728 | (2) |
|
|
730 | (1) |
|
20.3 Differencing Operators - Highpass Filters |
|
|
731 | (9) |
|
|
731 | (1) |
|
20.3.2 2-D Derivative Operators |
|
|
732 | (2) |
|
20.3.3 1-D Antisymmetric Differentiation Kernel |
|
|
734 | (2) |
|
|
736 | (1) |
|
20.3.5 2-D Second Derivative |
|
|
736 | (1) |
|
|
737 | (3) |
|
20.4 Discrete Sharpening Operators |
|
|
740 | (3) |
|
|
740 | (2) |
|
20.4.2 2-D Sharpening Operators |
|
|
742 | (1) |
|
|
743 | (1) |
|
|
744 | (5) |
|
20.6.1 Normalization of Contrast of Detected Features |
|
|
747 | (1) |
|
20.6.2 Amplified Discrete Matched Filters |
|
|
748 | (1) |
|
20.7 Approximate Discrete Reciprocal Filters |
|
|
749 | (4) |
|
|
749 | (2) |
|
|
751 | (2) |
|
21 Optical Imaging in Monochromatic Light |
|
|
753 | (70) |
|
21.1 Imaging Systems Based on Ray Optics Model |
|
|
754 | (8) |
|
21.1.1 Seemingly "Plausible" Models of Light in Imaging |
|
|
754 | (4) |
|
21.1.2 Imaging Systems Based on Ray "Selection" by Absorption |
|
|
758 | (2) |
|
21.1.3 Imaging System that Selects and Reflects Rays |
|
|
760 | (1) |
|
21.1.4 Imaging Systems Based on Refracting Rays |
|
|
761 | (1) |
|
21.1.5 Model of Imaging Systems |
|
|
761 | (1) |
|
21.2 Mathematical Model of Light Propagation |
|
|
762 | (21) |
|
21.2.1 Wave Description of Light |
|
|
762 | (3) |
|
|
765 | (1) |
|
21.2.3 Propagation of Light |
|
|
765 | (7) |
|
21.2.4 Examples of Fresnel Diffraction |
|
|
772 | (11) |
|
21.3 Fraunhofer Diffraction |
|
|
783 | (7) |
|
21.3.1 Examples of Fraunhofer Diffraction |
|
|
785 | (5) |
|
21.4 Imaging System based on Fraunhofer Diffraction |
|
|
790 | (2) |
|
21.5 Transmissive Optical Elements |
|
|
792 | (4) |
|
21.5.1 Optical Elements with Constant or Linear Phase |
|
|
793 | (1) |
|
21.5.2 Lenses with Spherical Surfaces |
|
|
794 | (2) |
|
21.6 Monochromatic Optical Systems |
|
|
796 | (15) |
|
21.6.1 Single Positive Lens with z1>>0 |
|
|
796 | (3) |
|
21.6.2 Single-Lens System, Fresnel Description of Both Propagations |
|
|
799 | (4) |
|
21.6.3 Amplitude Distribution at Image Point |
|
|
803 | (3) |
|
21.6.4 Shift-Invariant Description of Optical Imaging |
|
|
806 | (1) |
|
21.6.5 Examples of Single-Lens Imaging Systems |
|
|
807 | (4) |
|
21.7 Shift-Variant Imaging Systems |
|
|
811 | (12) |
|
21.7.1 Response of System at "Nonimage" Point |
|
|
811 | (5) |
|
21.7.2 Chirp Fourier Transform and Fraunhofer Diffraction |
|
|
816 | (3) |
|
|
819 | (4) |
|
22 Incoherent Optical Imaging Systems |
|
|
823 | (32) |
|
|
823 | (15) |
|
22.1.1 Optical Interference |
|
|
823 | (5) |
|
|
828 | (10) |
|
22.2 Polychromatic Source - Temporal Coherence |
|
|
838 | (4) |
|
|
842 | (1) |
|
22.3 Imaging in Incoherent Light |
|
|
842 | (3) |
|
22.4 System Function in Incoherent Light |
|
|
845 | (10) |
|
|
846 | (1) |
|
22.4.2 Comparison of Coherent and Incoherent Imaging |
|
|
847 | (6) |
|
|
853 | (2) |
|
|
855 | (62) |
|
23.1 Fraunhofer Holography |
|
|
856 | (11) |
|
23.1.1 Two Points: Object and Reference |
|
|
856 | (6) |
|
23.1.2 Multiple Object Points |
|
|
862 | (2) |
|
23.1.3 Fraunhofer Hologram of Extended Object |
|
|
864 | (2) |
|
23.1.4 Nonlinear Fraunhofer Hologram of Extended Object |
|
|
866 | (1) |
|
23.2 Holography in Fresnel Diffraction Region |
|
|
867 | (18) |
|
23.2.1 Object and Reference Sources in Same Plane |
|
|
868 | (4) |
|
23.2.2 Reconstruction of Virtual Image from Hologram with Compact Support |
|
|
872 | (1) |
|
23.2.3 Reconstruction of Real Image: z2 > 0 |
|
|
872 | (1) |
|
23.2.4 Object and Reference Sources in Different Planes |
|
|
873 | (5) |
|
23.2.5 Reconstruction of Point Object |
|
|
878 | (4) |
|
23.2.6 Extended Object and Planar Reference Wave |
|
|
882 | (1) |
|
23.2.7 Interpretation of Fresnel Hologram as Lens |
|
|
883 | (2) |
|
23.2.8 Reconstruction of Real Image of 3-D Extended Object |
|
|
885 | (1) |
|
23.3 Computer-Generated Holography |
|
|
885 | (13) |
|
23.3.1 CGH in the Fraunhofer Diffraction Region |
|
|
886 | (4) |
|
23.3.2 Examples of Cell CGHs |
|
|
890 | (4) |
|
23.3.3 2-D Lohmann Holograms |
|
|
894 | (1) |
|
23.3.4 Error-Diffused Quantization |
|
|
895 | (3) |
|
23.4 Matched Filtering with Cell-Type CGH |
|
|
898 | (2) |
|
23.5 Synthetic-Aperture Radar (SAR) |
|
|
900 | (17) |
|
|
904 | (2) |
|
23.5.2 Azimuthal Resolution |
|
|
906 | (1) |
|
23.5.3 SAR System Architecture |
|
|
907 | (7) |
|
|
914 | (3) |
References |
|
917 | (4) |
Index |
|
921 | |