Preface |
|
xi | |
|
Chapter 1 Review of Prerequisite Mathematics |
|
|
1 | (35) |
|
|
1 | (2) |
|
|
3 | (5) |
|
|
8 | (3) |
|
|
11 | (4) |
|
1.5 Mappings and Functions |
|
|
15 | (5) |
|
|
20 | (2) |
|
|
22 | (2) |
|
|
24 | (1) |
|
1.9 Results from Calculus |
|
|
25 | (8) |
|
1.10 Top 10 Ways to Avoid Errors in Calculations |
|
|
33 | (3) |
|
|
33 | (3) |
|
|
36 | (73) |
|
2.1 Signals and Vector Spaces |
|
|
37 | (2) |
|
2.2 Finite-dimensional Vector Spaces |
|
|
39 | (25) |
|
2.3 Infinite-dimensional Vector Spaces |
|
|
64 | (22) |
|
|
86 | (8) |
|
2.5 * Creating Orthonormal Bases-the Gram-Schmidt Process |
|
|
94 | (5) |
|
|
99 | (10) |
|
|
101 | (8) |
|
Chapter 3 The Discrete Fourier Transform |
|
|
109 | (68) |
|
|
109 | (5) |
|
3.2 The Discrete Fourier Transform |
|
|
114 | (3) |
|
|
117 | (9) |
|
3.4 DFT Properties and Theorems |
|
|
126 | (26) |
|
3.5 Fast Fourier Transform |
|
|
152 | (4) |
|
3.6 * Discrete Cosine Transform |
|
|
156 | (8) |
|
|
164 | (13) |
|
|
165 | (12) |
|
Chapter 4 The Fourier Series |
|
|
177 | (96) |
|
4.1 Sinusoids and Physical Systems |
|
|
178 | (1) |
|
4.2 Definitions and Interpretation |
|
|
178 | (9) |
|
4.3 Convergence of the Fourier Series |
|
|
187 | (12) |
|
4.4 Fourier Series Properties and Theorems |
|
|
199 | (16) |
|
|
215 | (8) |
|
|
223 | (4) |
|
|
227 | (6) |
|
4.8 Computing the Fourier Series |
|
|
233 | (5) |
|
4.9 Discrete Time Fourier Transform |
|
|
238 | (18) |
|
|
256 | (17) |
|
|
259 | (14) |
|
Chapter 5 The Fourier Transform |
|
|
273 | (94) |
|
5.1 From Fourier Series to Fourier Transform |
|
|
274 | (2) |
|
5.2 Basic Properties and Some Examples |
|
|
276 | (5) |
|
5.3 Fourier Transform Theorems |
|
|
281 | (18) |
|
5.4 Interpreting the Fourier Transform |
|
|
299 | (1) |
|
|
300 | (10) |
|
5.6 More about the Fourier Transform |
|
|
310 | (8) |
|
5.7 Time-bandwidth Relationships |
|
|
318 | (4) |
|
5.8 Computing the Fourier Transform |
|
|
322 | (14) |
|
5.9 *Time-frequency Transforms |
|
|
336 | (13) |
|
|
349 | (18) |
|
|
351 | (16) |
|
Chapter 6 Generalized Functions |
|
|
367 | (87) |
|
6.1 Impulsive Signals and Spectra |
|
|
367 | (4) |
|
6.2 The Delta Function in a Nutshell |
|
|
371 | (11) |
|
6.3 Generalized Functions |
|
|
382 | (22) |
|
6.4 Generalized Fourier Transform |
|
|
404 | (10) |
|
6.5 Sampling Theory and Fourier Series |
|
|
414 | (15) |
|
6.6 Unifying the Fourier Family |
|
|
429 | (4) |
|
|
433 | (21) |
|
|
436 | (18) |
|
Chapter 7 Complex Function Theory |
|
|
454 | (40) |
|
7.1 Complex Functions and Their Visualization |
|
|
455 | (5) |
|
|
460 | (6) |
|
|
466 | (4) |
|
7.4 Exp z and Functions Derived from It |
|
|
470 | (2) |
|
7.5 Log z and Functions Derived from It |
|
|
472 | (17) |
|
|
489 | (5) |
|
|
490 | (4) |
|
Chapter 8 Complex Integration |
|
|
494 | (69) |
|
8.1 Line Integrals in the Plane |
|
|
494 | (3) |
|
8.2 The Basic Complex Integral: ∫Γzn dz |
|
|
497 | (5) |
|
8.3 Cauchy's Integral Theorem |
|
|
502 | (10) |
|
8.4 Cauchy's Integral Formula |
|
|
512 | (8) |
|
8.5 Laurent Series and Residues |
|
|
520 | (11) |
|
8.6 Using Contour Integration to Calculate Integrals of Real Functions |
|
|
531 | (12) |
|
8.7 Complex Integration and the Fourier Transform |
|
|
543 | (13) |
|
|
556 | (7) |
|
|
557 | (6) |
|
Chapter 9 Laplace, Z, And Hilbert Transforms |
|
|
563 | (106) |
|
9.1 The Laplace Transform |
|
|
563 | (44) |
|
|
607 | (22) |
|
9.3 The Hilbert Transform |
|
|
629 | (23) |
|
|
652 | (17) |
|
|
654 | (15) |
|
Chapter 10 Fourier Transforms in Two and Three Dimensions |
|
|
669 | (74) |
|
10.1 Two-Dimensional Fourier Transform |
|
|
669 | (15) |
|
10.2 Fourier Transforms in Polar Coordinates |
|
|
684 | (12) |
|
|
696 | (13) |
|
10.4 Image Formation and Processing |
|
|
709 | (13) |
|
10.5 Fourier Transform of a Lattice |
|
|
722 | (9) |
|
10.6 Discrete Multidimensional Fourier Transforms |
|
|
731 | (5) |
|
|
736 | (7) |
|
|
737 | (6) |
Bibliography |
|
743 | (4) |
Index |
|
747 | |