Muutke küpsiste eelistusi

E-raamat: Fractals in Engineering: Theoretical Aspects and Numerical Approximations

  • Formaat - EPUB+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Fractal structures or geometries currently play a key role in all models for natural and industrial processes that exhibit the formation of rough surfaces and interfaces. Computer simulations, analytical theories and experiments have led to signi cant advances in modeling these phenomena across wild media. Many problems coming from engineering, physics or biology are characterized by both the presence of di erent temporal and spatial scales and the presence of contacts among di erent components through (irregular) interfaces that often connect media with di erent characteristics. This work is devoted to collecting new results on fractal applications in engineering from both theoretical and numerical perspectives. The book is addressed to researchers in the field.


C. Alberini and S. Finzi Vita, A numerical approach to a nonlinear
diffusion model for self-organised criticality phenomena.- M. Cefalo et al.,
Approximation of 3D Stokes flows in fractal domains.- S. Fragapane,
-Laplacian obstacle problems in fractal domains.- M. Gabbard, Discretization
of the Koch Snowflake Domain with Boundary and Interior Energies.- M.V.
Marchi, On the dimension of the Sierpinski gasket in l2.- U. Mosco and M.A.
Vivaldi, On the external approximation of Sobolev spaces by M-convergence.-
A. Rozanova-Pierrat, Generalization of Rellich-Kondrachov theorem and trace
compacteness for  fractal boundaries.
Maria Rosaria Lancia is Professor of Mathematical Analysis at Sapienza University of Rome, where she received her PhD in  Applied and Theoretical Mechanics. Her current research interests are Fractal Analysis and Numerical approximation of BVPs in fractal domains. The emphasis is on linear, quasilinear and fractional BVPs in and within fractal domains possibly with dynamical boundary conditions and vector analysis on fractafolds. She is an editorial board member of Fractal and Fractional, MDPI and of the J. of Applied Mathematics and Computation, Hill Publishing Group. Anna Rozanova-Pierrat is Associate Professor of Applied Mathematics in CentraleSupélec, University Paris-Saclay, France. She obtained his PhD on Applied Mathematics in University Pierre et Marie Currie Paris 6 and RUDN (Moscow, Russia), where she finished her studies on Theoretical and Applied  Mathematics.  Her current research interests are motivated by physical and engineer problems (models of non linear acoustics, de Gennes hypothesis on the speed of the heat propagation between two media, shape optimization) involving irregular and fractal boundaries.